基于多变量时序深度网络模型的水泥烟囱NOX预测方法

    公开(公告)号:CN113268871B

    公开(公告)日:2023-04-07

    申请号:CN202110560060.9

    申请日:2021-05-21

    Applicant: 燕山大学

    Abstract: 本发明公开了一种基于多变量时序深度网络模型的水泥烟囱NOX预测方法,具体步骤包括:根据水泥NOX产生机理、脱硝过程以及排放流程工艺,选取13个变量作为水泥烟囱NOX预测的输入变量,并对多变量时间序列统一进行归一化处理;根据水泥NOX生成过程中多变量时间序列在时域上表现的特征,建立基于深度学习LSTM特征重构模型进行NOX生成过程的本质特征提取;依据水泥烟囱NOX整体工艺流程,建立一种基于多变量时间序列长短时神经网络(LSTM)水泥烟囱NOX预测模型(MT‑LSTMs);确定模型的初始参数,并对网络模型进行前向训练,然后利用网络主导代价函数误差反向微调进行训练,通过对误差修正来优化模型参数。

    一种基于多尺度深度网络的水泥游离钙软测量方法

    公开(公告)号:CN112365935B

    公开(公告)日:2022-08-30

    申请号:CN202011125721.7

    申请日:2020-10-20

    Applicant: 燕山大学

    Abstract: 本发明公开了一种基于多尺度深度网络的水泥游离钙软测量方法,属于水泥熟料质量软测量检测技术领域,具体方法:分析水泥生产工艺,选取与水泥熟料中f‑CaO含量相关的过程变量,确定软测量模型所需的辅助变量;采用拉伊达准则标记每个辅助变量中的异常值,将每个辅助变量中的异常值和缺失值使用该辅助变量的均值代替;对辅助变量进行3层小波包分解并提取实时特征;将提取的实时特征送入LSTM模型并对模型进行训练,并通过误差反向传播算法对模型参数进行修正;用训练好的LSTM模型对f‑CaO含量进行预测。本申请方法可以提取更多的变量特征,能够更加准确的预测水泥熟料中的游离钙值,对水泥生产具有实际指导意义。

    基于多变量时序深度网络模型的水泥烟囱NOX预测方法

    公开(公告)号:CN113268871A

    公开(公告)日:2021-08-17

    申请号:CN202110560060.9

    申请日:2021-05-21

    Applicant: 燕山大学

    Abstract: 本发明公开了一种基于多变量时序深度网络模型的水泥烟囱NOX预测方法,具体步骤包括:根据水泥NOX产生机理、脱硝过程以及排放流程工艺,选取13个变量作为水泥烟囱NOX预测的输入变量,并对多变量时间序列统一进行归一化处理;根据水泥NOX生成过程中多变量时间序列在时域上表现的特征,建立基于深度学习LSTM特征重构模型进行NOX生成过程的本质特征提取;依据水泥烟囱NOX整体工艺流程,建立一种基于多变量时间序列长短时神经网络(LSTM)水泥烟囱NOX预测模型(MT‑LSTMs);确定模型的初始参数,并对网络模型进行前向训练,然后利用网络主导代价函数误差反向微调进行训练,通过对误差修正来优化模型参数。

Patent Agency Ranking