-
公开(公告)号:CN116821747A
公开(公告)日:2023-09-29
申请号:CN202310439834.1
申请日:2023-04-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/24 , G06F18/25 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种基于图文多模态信息融合的互联网不良应用分类识别方法,针对不良应用具有识别效果佳的优点。互联网不良应用分类识别方法包括:收集网站应用,并对网络应用进行类别标注;提取网站应用的应用名称并基于此构建第一向量;对网络应用进行沙盒运行,以获取网络应用的访问信息以及运行界面截图;基于访问信息构建第二向量;从运行界面截图中提取有效文本字符并基于此构建第三向量;融合第一向量、第二向量、第三向量,以获得融合向量;将融合向量作为输入,训练互联网不良应用分类识别模型,互联网不良应用分类识别模型包括全连接层、Softmax层、损失函数;基于训练完成的互联网不良应用分类识别模型对待识别的网站应用进行分类识别。
-
公开(公告)号:CN116628497A
公开(公告)日:2023-08-22
申请号:CN202310583452.6
申请日:2023-05-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/2415
Abstract: 本发明公开了一种基于联邦泛化数据处理方法、系统、计算设备及存储介质,所述方法包括:基于联邦对比学习进行数据建模,将数据样本标记为异常样本和正常样本的不同类别,每个本地模型在其本地数据集上进行联邦检测任务的迭代训练,并逐步更新其自己的参数;本地更新后,在可信的中央服务器聚合所有参与联邦检测任务的本地模型的参数,经过计算后聚合形成一个全局模型,然后服务器将所述全局模型分发给参与的终端,进行下次迭代训练。本发明实现在“数据孤岛”状态下对于样本的充分学习和利用,基于对比学习技术,拉近正常样本之间的距离,拉远异常样本距离,从而实现在保护隐私的前提下,对数据的建模,并为异常检测打下基础。
-
公开(公告)号:CN111863007A
公开(公告)日:2020-10-30
申请号:CN202010554629.6
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G10L21/0208 , G10L21/0272 , G06N3/04
Abstract: 本发明公开了一种基于深度学习的语音增强方法及系统,该方法包括如下步骤:步骤SS1:获得带噪语音的多个IRM预测值的解的集合;步骤SS2:将来自所述Boosting-DNN语音增强模型输出的IRM的解的集合拼接带噪特征作为输入,预测最终的IRM预测值集合 本发明通过将Boosting-DNN语音增强模型和Ensemble-DNN集成语音增强模型这两个DNN串接起来的方式,有效的解决了一个神经网络由于层次太深训练不稳定的现象,构建一种非常深的网络结构,彻底解决前端语音增强技术就可以确保把语音从带噪信号中分离出来,以便后端识别模型能正确识别语音的内容。
-
公开(公告)号:CN110895933A
公开(公告)日:2020-03-20
申请号:CN201811030952.2
申请日:2018-09-05
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于空时残差神经网络的远场语音识别方法,所述方法包括:步骤1)构建并训练空时残差神经网络ST-RES-LSTM,该神经网络是在的空间和时间两个维度上都引入了残差结构的LSTM神经网络;步骤2)利用训练好的空时残差神经网络ST-RES-LSTM进行声学模型训练,并生成每一帧的分类概率;步骤3)构建语音识别解码网络,并使用步骤2)的训练好的声学模型进行维特比解码出最终识别结果。本发明的方法在LSTM网络的空间和时间两个维度都引入残差结构,既能缓解层数加深带来的梯度消失问题,又能缓解LSTM在时间维度存在的梯度消失问题,从而提高语音识别的性能。
-
公开(公告)号:CN105187403A
公开(公告)日:2015-12-23
申请号:CN201510498610.3
申请日:2015-08-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L29/06
CPC classification number: H04L63/1408 , H04L63/1433
Abstract: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。
-
公开(公告)号:CN118013105B
公开(公告)日:2024-11-22
申请号:CN202310961857.9
申请日:2023-08-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F16/9538
Abstract: 本申请涉及一种推送信息的生成方法、装置、电子设备及存储介质,所述推送信息的生成方法通过获取第一推送信息集合,判断第一推送信息集合中,推送信息的第一比例是否小于预设阈值,推送信息表示包含预设内容的推送信息,并在第一比例小于预设阈值的情况下,根据第一比例确定调整策略,调整策略用于调整第一推送信息集合中的推送信息,基于调整策略调整第一推送信息集合中的推送信息,以生成目标推送信息集合。由此,在推送信息的第一比例较低时,可以通过调整策略起到调整推送信息的第一比例的作用,以此解决个性化推送方式中特定推送内容比例低的问题,实现了检测以及调整推送信息的比例的效果。
-
公开(公告)号:CN117591119B
公开(公告)日:2024-05-31
申请号:CN202311441226.0
申请日:2023-11-01
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及软件检测技术领域,公开了一种海量APK源码特征提取及相似分析方法,首先输入两个APK文件,通过源码解析反编译方法提取到APK包的AndroidManifest文件、本地化语言配置文件,提取到SMALI或JAVA源代码;再通过包名索引、启动类索引、固定目录识别方式,识别APK核心源码目录、第三方包目录、系统资源目录,并生成源码树;再对核心源码目录中的文件进行分析,计算文件HASH,提取源码文件中字符串类声明特征表示作为加权特征;计算拟进行分析的两棵源码树结构的相似度情况,根据源码目录的类型对进行不同程度的相似度加权。本发明降低分析资源投入和时间消耗,提升源码相似分析的准确度,能够实现在大规模APK数据分析场景的高性能分析。
-
公开(公告)号:CN118013105A
公开(公告)日:2024-05-10
申请号:CN202310961857.9
申请日:2023-08-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F16/9538
Abstract: 本申请涉及一种推送信息的生成方法、装置、电子设备及存储介质,所述推送信息的生成方法通过获取第一推送信息集合,判断第一推送信息集合中,推送信息的第一比例是否小于预设阈值,推送信息表示包含预设内容的推送信息,并在第一比例小于预设阈值的情况下,根据第一比例确定调整策略,调整策略用于调整第一推送信息集合中的推送信息,基于调整策略调整第一推送信息集合中的推送信息,以生成目标推送信息集合。由此,在推送信息的第一比例较低时,可以通过调整策略起到调整推送信息的第一比例的作用,以此解决个性化推送方式中特定推送内容比例低的问题,实现了检测以及调整推送信息的比例的效果。
-
公开(公告)号:CN116962996A
公开(公告)日:2023-10-27
申请号:CN202311222480.1
申请日:2023-09-21
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04W4/12 , H04W4/08 , H04L51/063 , H04L51/214 , H04L51/52 , H04L51/56 , G06N3/006
Abstract: 本发明提供一种基于粒子群算法的信息传播预测方法、装置和设备,属于信息处理技术领域,该方法包括:确定在第一时刻目标信息对应的各个类型的用户的数量;其中,各个类型的用户对目标信息的信任程度和/或传播方式不同;根据第一时刻目标信息对应的各个类型的用户的数量和信息传播模型,确定目标信息的传播预测结果;目标信息的传播预测结果中包括在第二时刻目标信息对应的各个类型的用户的数量;信息传播模型用于对信息在传播过程中各个类型用户数量的变化情况进行预测。本发明的方法实现了对目标信息传播过程中各类型用户数量变化情况的准确预测,提升了信息传播预测结果的准确性。
-
公开(公告)号:CN116611433A
公开(公告)日:2023-08-18
申请号:CN202310478295.2
申请日:2023-04-28
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06Q10/0639 , G06F18/24 , G06N3/0464 , G06N20/00
Abstract: 本发明实施例涉及一种情感识别方法及系统,所述方法包括:获取目标文本对应的初始数据,所述初始数据是由所述目标文本经过预处理得到的;设定所述初始数据的细粒度规则,得到所述初始数据对应不同长度的类别文本;根据所述细粒度规则和所述类别文本,确定不同长度的所述类别文本对应的不同类别的情感识别模型;将所述类别文本输入到对应的所述情感识别模型中进行识别处理,得到所述目标文本的情感识别结果。通过对获得到初始数据按照设定的细粒度规则进行设定分类,确定情感识别模型,通过识别处理得到情感识别结果,由此,可以更加准确地表达和识别用户的情感倾向和理解用户情感,更好地支持情感分析应用,更好地支持舆情分析,实现对短文本的情感识别处理的技术效果。
-
-
-
-
-
-
-
-
-