-
公开(公告)号:CN108932550A
公开(公告)日:2018-12-04
申请号:CN201810666946.X
申请日:2018-06-26
Applicant: 湖北工业大学
Abstract: 本发明提出了一种密集稀疏密集算法的优化方法,包括初始Dense训练阶段、Fuzzy阶段、最后Dense阶段,该方法使用隶属度来度量网络权重与整个网络的关联程度,确定每个数据信息与群集之间的关联程度。本发明有如下有点:1、与其他经典网络相比,本发明提出的优化网络是基于学习权重的价值,并且计算出哪些网络权重是更重要的连接,这种筛选过程更好地提高了分类精度。2、本发明的框架迁移性相比传统DSD得到提高,可用于继Alexnet后的VGG16、vgg19等其余新型网络。3、针对传统的深度神经网络所需上万次迭代分类问题,本发明在数百次迭代以内能有效提高分类精度。