一种基于深度学习的微电网全自动导航方法、系统与装置

    公开(公告)号:CN112134304A

    公开(公告)日:2020-12-25

    申请号:CN202011000664.X

    申请日:2020-09-22

    Abstract: 本发明涉及一种基于深度学习的微电网全自动导航方法、系统与装置。该方法包括:获取微电网系统日前24时段的系统净负荷;将系统净负荷输入微电网日前优化调度模型,输出微电网系统的日前优化调度策略;微电网日前优化调度模型为双层Bi‑LSTM神经网络模型;根据可控机组的最小技术出力、出力上限值、爬坡约束和运行时间约束,对微电网系统的日前优化调度策略的可控机组出力进行调整;根据储能充放电功率上限值、容量约束和调度周期内储能平衡约束,对储能充放电功率进行调整;根据微电网与大电网联络线交换功率上限值和系统功率平衡约束对微电网与大电网联络线交换功率进行调整。本发明可以提高微电网日前优化调度的准确度和效率。

    具备通讯故障自检及快速隔离的新能源边缘侧通信模块

    公开(公告)号:CN116319269B

    公开(公告)日:2023-09-15

    申请号:CN202310565931.5

    申请日:2023-05-19

    Abstract: 本申请涉及一种具备通讯故障自检及快速隔离的新能源边缘侧通信模块。通讯故障自检及快速隔离方法包括:检测新能源边缘侧通信模块发生故障,对新能源边缘侧通信模块进行错误程序检测处理;若通信程序存在程序错误,获取新能源边缘侧通信模块中存在错误的目标程序,并对目标程序进行隔离;将目标程序隔离后的通信程序进行重启,对重启后的通信程序进行程序错误检测处理;若重启后的通信程序不存在程序错误,将重启后的通信程序作为故障处理后的通信程序;若重启后的通信程序存在程序错误,对新能源边缘侧通信模块重新安装通信程序,将重新安装的通信程序作为故障处理后的通信程序。采用本方法能够提高新能源边缘侧通信模块的运行效率。

    基于模型预测控制的风电场频率快速响应控制方法

    公开(公告)号:CN115833102B

    公开(公告)日:2023-08-25

    申请号:CN202211575153.X

    申请日:2022-12-08

    Abstract: 本发明公开了一种基于模型预测控制的风电场频率快速响应控制方法,包括步骤:S1:利用SCADA系统的风电机组状态数据,训练得到基于神经网络的风电机组的状态预测模型;基于电网频率偏差对应的风电场总有功功率参考值,并结合状态预测模型,采用模型预测控制算法,得到各个风电机组的有功功率参考值;S2:离线训练基于神经网络的风电机组控制模型,利用训练好的模型替代模型预测控制算法对各风电机组进行在线控制;S3:当状态预测模型误差超过设定阈值时,采用最新的SCADA系统监测数据重新训练,更新风电机组的状态预测模型和控制模型。本发明构建了更精确的风电机组状态预测模型,并能够迅速给出各风电机组参考功率,实现风电场快速频率响应控制。

    一种混合驱动的微电网能量管理方法、系统及装置

    公开(公告)号:CN112491094B

    公开(公告)日:2023-07-04

    申请号:CN202011301037.X

    申请日:2020-11-19

    Abstract: 本发明公开一种混合驱动的微电网能量管理方法、系统及装置,所述混合驱动的微电网能量管理方法包括:获取历史运行数据和决策信息,得到样本数据;根据所述样本数据对门控循环单元GRU神经网络进行训练,得到运行‑决策映射模型;基于所述运行‑决策映射模型,根据日前24时段的运行数据,得到初始决策信息;根据微电网能量管理物理模型及日前24时段的运行数据,采用粒子群算法对所述初始决策信息进行迭代处理,得到最终决策结果。本发明结合模型驱动方法在因果关系处理中的优势和数据驱动方法计算效率的优势,有效提升了决策结果的准确性及高效性并提高了微电网优化运行的鲁棒性。

Patent Agency Ranking