-
公开(公告)号:CN108537366B
公开(公告)日:2021-08-24
申请号:CN201810219230.5
申请日:2018-03-16
Applicant: 浙江工业大学
Abstract: 基于最优卷积二维化的水库调度方法,包括:步骤1.基于多目标最优化算法的输入数据卷积化处理;步骤2.基于卷积神经网络的动态调度模型构建;步骤3.评估模型和调整方案生成,包括训练部份和实时调度部分。本发明结合深度神经网络算法,和权值共享技术,通过大数据系统提供的大量调度历史数据训练深度人工神经网络理解调度场景内的隐含知识。研究输入水库动态精细化综合调度数据的时间空间关联性,通过权值共享的神经元链接方式减少模型构建中每层的权值数量,增加模型的深度,从而使网络充分认知水库动态精细化综合调度,并发现水库动态精细化综合调度过程中更深层次的结构,最终完成响应快,准确性高的对动态调度模型构建过程。
-
公开(公告)号:CN112598189A
公开(公告)日:2021-04-02
申请号:CN202011597379.0
申请日:2020-12-29
Applicant: 浙江工业大学
Abstract: 本发明公开了一种基于成功历史自适应参数的差分进化(SHADE)算法用于搜索应急物资紧急救援路径,主要方法为:通过学习差分进化算法中的成功个体的交叉率和变异率,使得该方法能够找到更优越的路径。为了搜索更多的等效的应急物资救援调度路径,适应度分享机制被同时用在目标空间和决策空间以保证路径的多样性,为用户提供多样的可行路径以供选择,也避免单一路径由于某种突发原因不可通行情况的出现。本发明不仅能够搜索到满足目标条件的最优应急物资救援调度路径,而且能够提供多条等效路径,为应急物资第一时间送至目的地进行救援提供保障。
-