一种基于深度强化学习的集能型无线中继网络吞吐量最大化方法

    公开(公告)号:CN109195207A

    公开(公告)日:2019-01-11

    申请号:CN201810795675.8

    申请日:2018-07-19

    Abstract: 一种基于深度强化学习的集能型无线中继网络吞吐量最大化方法,包括以下步骤:1)集能型无线中继网络中通过可再生能量优化管理实现最大吞吐量,其中,优化问题描述为一个多变量优化问题;2)将问题P1分解为两部分优化:功率子优化和时隙子优化,即通过强化学习算法优化变量pi和来得到最优的ri。本发明提供一种在集能型无线中继网络中通过联合时间调度和功率分配实现以最大吞吐量最大化系统效益的方法。

    一种基于深度确定性策略梯度方法的移动边缘计算速率最大化方法

    公开(公告)号:CN108738045A

    公开(公告)日:2018-11-02

    申请号:CN201810342357.6

    申请日:2018-04-17

    Abstract: 一种基于深度确定性策略梯度方法的移动边缘计算速率最大化方法,包括以下步骤:1)计算出在给出模式选择下系统中所有无线设备的速率总和;2)所有无线设备集合;3)所有无线设备的计算速率总和最大化问题;4)通过深度确定性策略梯度方法来寻找一个最优的模式选择;5)所有无线设备的模式选择M0和M1作为深度确定性策略梯度方法的状态xt,动作a则是对状态xt的更改,更改后系统的总计算速率会与一个设定的标准值进行比较,如果比这个标准值大则使当前奖励r(xt,a)设为正值,反之设为负值,同时系统进入下一状态xt+1。本发明在保证用户体验的前提下最大化所有无线设备的总和计算速率。

    一种基于深度确定性策略梯度方法的移动边缘计算分流决策方法

    公开(公告)号:CN108632862A

    公开(公告)日:2018-10-09

    申请号:CN201810343313.5

    申请日:2018-04-17

    Abstract: 一种基于深度确定性策略梯度方法的移动边缘计算分流决策方法,包括以下步骤:1)计算出在给出分流决策下系统中所有的能量损耗;2)通过深度确定性策略方法来寻找一个最优的分流决策xnm,所有用户的分流决策xnm都被编进执行单元所需的状态xt;3)所有无线设备的分流决策xnm作为深度确定性策略方法的状态xt,动作a则是对状态xt的更改,更改后系统的总能量损耗会与一个设定的标准值进行比较,如果比这个标准值大则使当前奖励r(xt,a)设为正值,反之设为负值,同时系统进入下一状态xt+1,不断重复这个迭代过程直到得到最佳分流决策xnm。本发明在保证用户体验的前提下最小化能量损耗。

    一种基于自适应扩展卡尔曼滤波的车辆速度跟踪方法

    公开(公告)号:CN109190811B

    公开(公告)日:2021-10-26

    申请号:CN201810946898.X

    申请日:2018-08-20

    Abstract: 一种基于自适应扩展卡尔曼滤波的车辆速度跟踪方法,包括以下步骤:首先,在智能网联交通系统中,通过DSRC技术自动识别行驶的车辆并获取相关数据,实现车载系统与路边单元的信息交互;接着,针对采集的相关信息,首先通过量化公式对路边单元与车载系统的方位差进行量化,其次通过自回归滑动平均法对加速度进行预测,最后利用自适应扩展卡尔曼滤波进行速度预测;最后,将处理好的信息广播给路边单元,以便于下一次与车载系统的信息交互。本发明提供了一种基于自适应扩展卡尔曼滤波的车辆速度跟踪方法。

    一种基于深度多网络学习的集能型无线中继网络吞吐量最大化方法

    公开(公告)号:CN108990141B

    公开(公告)日:2021-08-03

    申请号:CN201810795991.5

    申请日:2018-07-19

    Abstract: 一种基于深度多网络学习的集能型无线中继网络吞吐量最大化方法,包括以下步骤:1)集能型无线中继网络中通过可再生能量优化管理实现最大吞吐量,其中,优化问题描述为一个多变量优化问题;2)将问题P1分解为两部分优化:功率子优化和时隙子优化,即通过深度多网络学习的方法优化变量pi和来得到最优的ri。本发明提供一种在集能型无线中继网络中通过联合时间调度和功率分配实现以最大吞吐量最大化系统效益的方法。

    基于深度强化学习的非正交接入上行传输时间优化方法

    公开(公告)号:CN108712755B

    公开(公告)日:2021-02-26

    申请号:CN201810477062.X

    申请日:2018-05-18

    Abstract: 一种基于深度强化学习的非正交接入上行传输时间优化方法,包括以下步骤:(1)在基站的覆盖范围下总共有I个移动用户,提出了一种满足移动用户的服务质量同时,在移动用户的上传量给定的情况下最小化移动用户的上行传输时间和所有用户总能量消耗;(2)ORRCM问题是在给定移动用户上传量的情况下找到最优的整体无线资源消耗,观察ORRCM问题知道它的目标函数只有一个变量t;(3)通过强化学习算法来找到一个最优的上行传输时间t*,使得有最优的整体无线资源消耗;(4)不断重复迭代过程直到得到最优的上行传输时间t*,使得有最优的整体无线资源消耗。

    一种基于深度神经网络的车辆轨迹预测方法

    公开(公告)号:CN109272745B

    公开(公告)日:2020-10-27

    申请号:CN201810947323.X

    申请日:2018-08-20

    Abstract: 一种基于深度神经网络的车辆轨迹预测方法,包括以下步骤:首先,在智能网联交通系统中,通过DSRC技术自动识别行驶的车辆并获取相关数据,实现车载系统与路边单元的信息交互;其次,针对采集的相关信息,首先通过量化公式对路边单元与车载系统的方位角进行量化,其次通过自回归滑动平均法对加速度进行预测,最后利用深度神经网络进行轨迹预测;最后,将处理好的信息通过光缆传送给另外3个路边单元,以便于下一次与车载系统的信息交互。本发明提供了一种在智能网联交通系统下基于深度神经网络的车辆轨迹预测方法。

    一种基于量化自适应卡尔曼滤波的车辆速度预测方法

    公开(公告)号:CN109118786B

    公开(公告)日:2020-08-04

    申请号:CN201810947025.0

    申请日:2018-08-20

    Abstract: 一种基于量化自适应卡尔曼滤波的车辆速度预测方法,包括以下步骤:首先,在智能网联交通系统中,通过DSRC技术自动识别行驶的车辆并获取相关数据,实现车载系统与路边单元的信息交互;接着,针对采集的相关信息,首先通过量化公式对路边单元与车载系统的方位角进行量化,其次通过自回归滑动平均法对加速度进行预测,最后利用自适应卡尔曼滤波进行速度预测,达到速度修正值;最后,将处理好的信息通过光缆传送给另外3个路边单元,以便于下一次与车载系统的信息交互。本发明提供了一种在智能网联交通系统下基于量化自适应卡尔曼滤波的车辆速度预测方法。

Patent Agency Ranking