-
公开(公告)号:CN113230902A
公开(公告)日:2021-08-10
申请号:CN202110485550.7
申请日:2021-04-30
Applicant: 武汉纺织大学
Abstract: 本发明提供了一种具有多尺度表面结构的纳滤膜材料及其制备方法与应用。通过将具有表面周期纹理的机织织物作为基材,并采用湿法非织造技术在机织织物表面负载聚合物纳米纤维涂层,形成具有表面周期纹理结构的纳米纤维涂层膜;再采用界面聚合法制备聚哌嗪酰胺纳滤分离层,并使其包裹覆盖于聚合物纳米纤维涂层,使聚哌嗪酰胺纳滤分离层同时具备表面周期纹理结构和峰谷结构,形成具有多尺度表面结构的纳滤膜材料。通过上述方式,本发明能够赋予纳滤膜材料多尺度的表面结构,有效提升其渗透性与抗污性,使其能够应用于切向流液体的纳滤领域;且该纳滤膜材料的制备工艺简单、可控性强,易于规模化制备,能够满足实际工业化生产与应用的需求。
-
公开(公告)号:CN110787790A
公开(公告)日:2020-02-14
申请号:CN201911105529.9
申请日:2019-11-13
Applicant: 武汉纺织大学
IPC: B01J23/10 , B01J23/83 , B01J35/08 , B01J37/08 , B01J35/10 , B01J20/20 , B01J20/28 , B01J20/30 , C02F1/28 , C02F1/30 , C02F1/32 , C02F1/70 , C02F101/22 , C02F101/34 , C02F101/38
Abstract: 本发明提供了一种海胆状金属氧化物多孔光催化材料及其制备方法和应用。所述制备方法包括:将双金属盐溶液与有机配体溶液混合反应得纳米短棒状金属有机骨架,然后在有机溶剂中自组装成海胆状金属有机骨架微刺球结构,最后经高温煅烧得海胆状金属氧化物多孔光催化材料。本发明制备的海胆状金属氧化物多孔光催化材料具有多级扑拓碳结构,对有机污染物具有很强的捕获和吸附作用,能够快速将有机污染物捕获在光催化剂表面,从而显著提高光催化效率。此外,在双金属的协同作用下,显著提高光催化效率,克服多孔光催化材料制备方法繁杂、光催化效率低的缺点,也可应用于污染物的吸附、传感等方面。
-
公开(公告)号:CN118767699A
公开(公告)日:2024-10-15
申请号:CN202410953576.3
申请日:2024-07-16
Applicant: 武汉纺织大学
IPC: B01D69/02 , B01D69/12 , B01D67/00 , C02F1/04 , C02F103/08
Abstract: 本发明提供了一种高效水净化的双功能纳米纤维膜复合材料及其制备方法,包括依次设置的基材、纳米纤维膜层、碳纳米管层及疏水层,该复合材料呈梯度网络结构;且双功能纳米纤维膜复合材料为一面亲水、一面疏水的不对称润湿性复合材料。本发明的纳米纤维膜复合材料在应用时,海水通过梯度网络结构的毛细作用输送至碳纳米管层,利用碳纳米管良好的光热转换性能实现界面蒸发,水分子可直接穿过疏水层蒸发逸出,不会在材料表面聚集,避免了热量的损失,达到了高效海水淡化的目的。本发明的复合材料结构简单,成本更为低廉,增加了材料的应用范围,制备的类似莲花状3D结构,具有更高的蒸发效率,对于解决水资源短缺问题具有重要意义。
-
公开(公告)号:CN114887396B
公开(公告)日:2023-12-19
申请号:CN202210655082.8
申请日:2022-06-10
Applicant: 武汉纺织大学
Abstract: 本发明公开了一种抗菌消毒透明性好的空气过滤材料的制备方法。通过将纳米纤维悬浮液熔喷到多孔透明基材表面,在多孔透明基材表面形成纳米纤维膜,再将纳米线溶液喷涂于纳米纤维膜表面,干燥后得到抗菌消毒透明性好的空气过滤材料。本发明通过使用多孔透明基材,增强了空气过滤材料的透明度,便于人与人之间的沟通交流,尤其能促进主要依赖于视觉信息沟通的具有听力障碍人群的交流,同时,通过采用梯度结构设计,使得空气过滤材料的孔径从面向人体一侧向外依次减小,便于堵塞颗粒物的清理,另外,纳米线的抗菌效果和和良好的光热性能,使得空气过滤材料具备高效抗菌及可重复使用的功能。
-
公开(公告)号:CN115888280A
公开(公告)日:2023-04-04
申请号:CN202211697966.6
申请日:2022-12-28
Applicant: 武汉维晨科技有限公司 , 武汉纺织大学
Abstract: 本发明提供了一种纳米纤维与纳米网复合的双网络结构膜及其制备方法,双网络结构膜包括多孔基材以及负载于多孔基材表面的双网络结构,双网络结构由纳米纤维与低分子量凝胶纳米网复合而成。本发明先在多孔基材表面负载纳米纤维网络,然后将低分子量凝胶原位组装在纳米纤维网络中,利用了纳米纤维和低分子量凝胶之间的强相互作用,使低分子量凝胶在纳米纤维上自组装形成疏松且连接稳定的纳米网络结构;增强机械性能的同时,避免了增加纳米纤维网络的堆积密度和空气阻力,使得纳米纤维与纳米网复合的双网络结构膜具优异的空气过滤性能,在空气过滤及防护领域具有较好的应用前景。
-
公开(公告)号:CN112238039B
公开(公告)日:2022-10-04
申请号:CN202010911655.X
申请日:2020-09-02
Applicant: 武汉纺织大学
Abstract: 本发明提供了一种具有自驱动集水功能的超疏水表面及其制备方法。通过将微米尺寸的微球组装成单层微球阵列,并将磁性纳米粒子填充至单层微球阵列的间隙中,形成二元组装模板;在外加磁场的作用下,将树脂喷涂于二元组装模板表面,使混有磁性纳米粒子的树脂定向生长成柱状微阵列结构;再将润滑液浸润于柱状微阵列结构的间隙中,形成具有自驱动集水功能的超疏水表面。通过上述方式,本发明能够利用单层微球阵列使磁性纳米粒子规整排布,使其带动树脂定向生长成相互独立且规整有序排列的柱状微阵列结构;并利用该柱状微阵列中相邻柱状结构的间距产生的毛细效应差异与润滑液的协同作用,使空气中的液滴自发地聚集、融合与弹跳,实现自驱动集水功能。
-
公开(公告)号:CN112246112B
公开(公告)日:2022-04-08
申请号:CN202010929530.X
申请日:2020-09-07
Applicant: 武汉纺织大学
Abstract: 本发明提供了一种抗污除菌纳米纤维过滤膜及其制备方法。首先采用熔融共混相分离法制备直径为50~300nm的聚乙烯醇‑乙烯共聚物纳米纤维;然后配制成悬浮液涂覆在非织造布基材表面,得到一层厚度为2~10μm、孔径为90~130nm的纳米纤维薄层;再在其表面吸附接枝化合物后,采用等离子体处理,形成化学键合接枝,从而得到具有抗污和除菌功能的纳米纤维过滤膜。本发明通过在聚乙烯醇‑乙烯共聚物纳米纤维膜表面接枝两性化合物和/或同时包含烯烃双键以及羧基、磺酸基中的至少一种基团的化合物,既能高效拦截细菌,又能减少对BSA的吸附,进而抑制细菌在膜表面的吸附生长,显著提高其抗污能力。
-
公开(公告)号:CN113144913A
公开(公告)日:2021-07-23
申请号:CN202110495959.7
申请日:2021-05-07
Applicant: 武汉纺织大学
Abstract: 本发明提供了一种高渗透性抗污纳米纤维分离膜材料及其制备方法与应用。该制备方法是以表面具有周期纹理的机织织物作为基材,采用湿法非织造技术在机织织物表面负载具有亲水性的聚合物纳米纤维涂层,同时利用化学交联剂使机织织物与聚合物纳米纤维涂层紧密贴合,得到高渗透性抗污纳米纤维分离膜材料。通过上述方式,本发明能够使制备的分离膜材料同时具有小孔径致密结构和表面纹理结构,实现对膜材料渗透性及抗污性的协同提升。且该分离膜材料的制备方法简便易行、可控性强、能够提高制备效率,易于规模化制备,制得的分离膜材料能够应用于切向流液体的超滤及微滤领域,具有较高的实际应用价值。
-
公开(公告)号:CN112246112A
公开(公告)日:2021-01-22
申请号:CN202010929530.X
申请日:2020-09-07
Applicant: 武汉纺织大学
Abstract: 本发明提供了一种抗污除菌纳米纤维过滤膜及其制备方法。首先采用熔融共混相分离法制备直径为50~300nm的聚乙烯醇‑乙烯共聚物纳米纤维;然后配制成悬浮液涂覆在非织造布基材表面,得到一层厚度为2~10μm、孔径为90~130nm的纳米纤维薄层;再在其表面吸附接枝化合物后,采用等离子体处理,形成化学键合接枝,从而得到具有抗污和除菌功能的纳米纤维过滤膜。本发明通过在聚乙烯醇‑乙烯共聚物纳米纤维膜表面接枝两性化合物和/或同时包含烯烃双键以及羧基、磺酸基中的至少一种基团的化合物,既能高效拦截细菌,又能减少对BSA的吸附,进而抑制细菌在膜表面的吸附生长,显著提高其抗污能力。
-
公开(公告)号:CN112238039A
公开(公告)日:2021-01-19
申请号:CN202010911655.X
申请日:2020-09-02
Applicant: 武汉纺织大学
Abstract: 本发明提供了一种具有自驱动集水功能的超疏水表面及其制备方法。通过将微米尺寸的微球组装成单层微球阵列,并将磁性纳米粒子填充至单层微球阵列的间隙中,形成二元组装模板;在外加磁场的作用下,将树脂喷涂于二元组装模板表面,使混有磁性纳米粒子的树脂定向生长成柱状微阵列结构;再将润滑液浸润于柱状微阵列结构的间隙中,形成具有自驱动集水功能的超疏水表面。通过上述方式,本发明能够利用单层微球阵列使磁性纳米粒子规整排布,使其带动树脂定向生长成相互独立且规整有序排列的柱状微阵列结构;并利用该柱状微阵列中相邻柱状结构的间距产生的毛细效应差异与润滑液的协同作用,使空气中的液滴自发地聚集、融合与弹跳,实现自驱动集水功能。
-
-
-
-
-
-
-
-
-