-
公开(公告)号:CN113326968A
公开(公告)日:2021-08-31
申请号:CN202110424577.5
申请日:2021-04-20
Applicant: 国网浙江省电力有限公司台州供电公司 , 武汉大学
Abstract: 本发明提出了一种基于调整PSO惯性权重的母线短期负荷预测方法及装置,包括:S100:构建用于预测母线短期负荷的BP神经网络,初始化BP神经网络的参数,初始化PSO算法的惯性权重;S200:将母线侧的历史数据作为训练集输入BP神经网络,基于惯性权重对PSO算法中的粒子进行迭代寻优,迭代结束后根据寻优结果更新BP神经网络的参数;S300:评价更新参数后的BP神经网络的输出结果,若评价结果超过预设阈值,调整惯性权重,基于调整后的惯性权重重复S200;S400:若评价结果符合预设条件,将母线侧的实时数据输入更新参数后的BP神经网络,得到母线短期负荷的预测结果。结合BP神经网络的训练效果对惯性权重进行合理的优化,提高了BP神经网络的预测精度。