图像乘性噪声移除方法
    12.
    发明公开

    公开(公告)号:CN104657951A

    公开(公告)日:2015-05-27

    申请号:CN201510093055.6

    申请日:2015-03-02

    Abstract: 本发明公开了一种图像乘性噪声移除方法,其在稀疏表示非局部训练字典的基础上嵌入变分法和低秩约束条件,对非局部相似块进行权重匹配,然后用迭代函数求解稀疏编码和把软阈值算法应用在低秩求解上。本发明的优点是不仅有很好的去噪效果和高的峰值信噪比,还能够很好的保留图像边缘的信息及纹理特征在视觉上更接近于原图,在相似度上也有很大的提高。

    基于SOPC的双目视频拼装置及双目视频拼接方法

    公开(公告)号:CN103442180A

    公开(公告)日:2013-12-11

    申请号:CN201310377399.0

    申请日:2013-08-27

    Abstract: 本发明的基于SOPC的双目视频拼接装置,包括以NiosII软核处理器为核心的SOPC系统,其一对CMOS图像传感器通过FPGA端口与一对双目视频采集模块分别连接;一对双目视频采集模块一起连接双目视频存储模块;双目视频存储模块输出端的一路经特征提取协处理器与双目视频输出模块相连接,另一路与双目视频显示模块相连接;双目视频输出模块还分别连接NiosII处理器和上位机,双目视频显示模块还连接VGA显示器。本发明的双目视频拼接方法,通过欧氏距离法对特征点进行粗匹配,然后使用KNN法提出部分误匹配点,最后采用RANSAC计算出单应性矩阵,再经由柱面空间转换及线型加权融合,实现一帧双目视频数据的实时拼接。

    高灵敏度导航卫星信号非线性捕获方法及装置

    公开(公告)号:CN102680988B

    公开(公告)日:2013-11-06

    申请号:CN201210162393.7

    申请日:2012-05-23

    Abstract: 本发明所要解决的技术问题是提供一种高灵敏度导航卫星信号非线性捕获方法及装置,该方法与装置采用DBZP技术来减小相关功率损失;用FFT技术减少了做相关所需时间;利用非线性双稳随机共振系统的特性来提高系统输出信噪比;捕获过程中引入了MTM(最大相关值与相关均值比值)阈值检测方法,提高了正确检测率。本发明能够最大限度地提高GPS信号捕获灵敏度;并且可以极大限度地减小捕获时间,为弱GPS信号的实时高灵敏度捕获提供技术支持。

    一种基于分布词向量CNN-RNN网络的图像描述方法

    公开(公告)号:CN110046226B

    公开(公告)日:2021-09-24

    申请号:CN201910306242.6

    申请日:2019-04-17

    Abstract: 本发明公开了一种基于分布词向量CNN‑RNN网络的图像描述方法,其特征在于,包括如下步骤:1)分布表示词向量的生成;2)分布表示标签的生成;3)分布表示语义标签的生成;4)网络设计;5)生成图像的描述性语句。这种方法引入到原本的CNN‑RNN网络模型中使其可生成更精确的结果、使CNN子网提供给RNN子网更丰富的语义内容,使得整个CNN‑RNN网络模型依然能够保持结构化的优点,这种方法中低维稠密的分布表示可以轻松地嵌入海量词语构成完整的语义空间、视觉内容能够更好实现到语义空间的映射,基于分布表示词向量设计的监督信号能更准确的概括视觉内容和更充分的利用向量空间监督CNN优化方向。

    基于随机森林的级联位置回归用于人脸对齐的方法

    公开(公告)号:CN105631436B

    公开(公告)日:2018-12-04

    申请号:CN201610054837.3

    申请日:2016-01-27

    Abstract: 本发明公开了一种基于随机森林的级联位置回归用于人脸对齐的方法,其特征在于,包括如下步骤:1)得到归一化人脸图片;2)计算人脸的平均形状;3)生成人脸对齐框架的候选特征点;4)生成人脸形状索引灰度值;5)生成人脸形状索引特征X;6)构建人脸对齐框架;7)初始化人脸形状,不断迭代后,输出最终的估计人脸形状。这种方法在光照、表情变化、遮挡等情况下能够保持很好的鲁棒性,并且能提高精度、减少失败率。

    基于数据增强的改进型卷积网络的图像超分辨率重建方法

    公开(公告)号:CN106952229A

    公开(公告)日:2017-07-14

    申请号:CN201710151796.4

    申请日:2017-03-15

    Abstract: 本发明公开一种基于数据增强的改进型卷积网络的图像超分辨率重建方法,包括数据增强和网络结构改进的步骤。一方面采用多角度旋转和翻转样本集的方式增加了样本的多样性,因此可以获得多角度背景的特征实现特征的旋转不变性;充分的特征信息有利于提高图像的重建精度。另一方面本方法的网络模型利用深层卷积神经网络提取特征,多层的卷积层有利于提取更高级,更加完整的特征,然后用反卷积层作为重建层对卷积层输出的特征映射进行处理,恢复图像分辨率,从而得到超分辨率图像。由于卷积层缺乏旋转不变性的特性,本方法另外样本的多样性达到增加参数的目的,从而更好的拟合网络最终实现提高重建精度,并加快网络训练的收敛速度的效果。

    基于改进的屏蔽泊松算法的三维点云重建方法

    公开(公告)号:CN106780751A

    公开(公告)日:2017-05-31

    申请号:CN201710044516.X

    申请日:2017-01-19

    CPC classification number: G06T17/30

    Abstract: 本发明公开了基于改进的屏蔽泊松算法的三维点云重建方法,包括如下步骤:获取模型三维点云数据;引入屏蔽因子,通过引入点和梯度的约束来对泊松算法进行预处理约束限制;使用八叉树分割对点云简化去噪,压缩存储,建立点云间拓扑结构,实现快速建立和高效查找八叉树邻节点;对每个点云法向量进行法向重定向,减少法向指向的二义性;计算向量场;求解屏蔽泊松方程,得到指示函数;对点云等值面提取,得到三维重建模型。本发明方法整体上提高了法向量精确度很好地去除伪封闭曲面,同时对孔洞有良好填充,对表面信息丰富的物体模型点云数据,能够使纹理细节更显著。本发明方法可以广泛用在逆向工程,文物修复,和医学图像等领域。

Patent Agency Ranking