-
公开(公告)号:CN118432891A
公开(公告)日:2024-08-02
申请号:CN202410554797.3
申请日:2024-05-07
Applicant: 暨南大学
Abstract: 本发明公开了一种基于聚类组合优化的工控联邦入侵检测后门防御方法和系统,该方法利用现有的多种后门攻击方法产生恶意的更新梯度,与正常的更新梯度作为训练集和测试集;将多种聚类方法的组合方式作为优化变量进行编码,使用训练集对组合方式进行训练,评估该组合方式在测试集上恶意梯度的识别真阳率和真阴率,将其作为优化目标函数,再通过多目标种群演化操作,获得高识别准确率的聚类组合方式,并将其用于工控联邦入侵检测系统中的后门攻击防御策略,从而实现对恶意梯度高效精准的检测。本发明在保障入侵检测系统性能的同时,得到的最优聚类方法组合方案可以准确识别并过滤恶意更新梯度,从而提高了工控联邦入侵检测系统的安全性和鲁棒性。