-
公开(公告)号:CN113094368A
公开(公告)日:2021-07-09
申请号:CN202110392024.6
申请日:2021-04-13
Applicant: 成都信息工程大学 , 汉网云联成都科技有限公司
Inventor: 乔少杰 , 杨国平 , 宋海权 , 韩楠 , 李勇 , 闵圣捷 , 王伟业 , 孙科 , 袁犁 , 张浩东 , 范勇强 , 甘戈 , 冉先进 , 魏军林 , 余华 , 元昌安 , 黄发良 , 覃晓 , 郑皎凌 , 张永清
IPC: G06F16/22 , G06F16/2455 , G06F16/2457 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种提升缓存访问命中率的系统及方法,通过设置DDQN模型,提升了缓存区的访问命中率,能够更好地利用缓存区,提高了查询效率。本发明提供的DDQN模型能够学习经验,可以将若干个查询放入查询集合存储表并调度,且从历史执行的查询中获得更多的经验,改进调度策略。本发明能够有效地捕捉缓存区状态以及数据访问模式,更好地利用了缓存区并改进其查询的决策安排;DDQN模型能够适应从未执行过的查询,查询调度策略能够快速适应新的查询模板,从而产生显著的效果以及提升资源共享效率。
-
公开(公告)号:CN110347842A
公开(公告)日:2019-10-18
申请号:CN201910425540.7
申请日:2019-05-21
Applicant: 成都信息工程大学 , 成都珉安科技有限公司
IPC: G06F16/36 , G06F16/9537 , G06Q50/14
Abstract: 本公开涉及一种基于智能腕表的知识图谱导游系统,包括:智能腕表,用于获取游客的身份信息和所在的位置信息,并将所述身份信息和所述位置信息发送至服务器;服务器,用于接收所述智能腕表发送的所述身份信息和所述位置信息,查找对应于所述身份信息的游客历史记录,查找对应于所述位置信息的景点知识图谱,基于所述游客历史记录和所述景点知识图谱生成推荐景点信息,并将所述推荐景点信息发送给所述智能腕表。用于解决目前的导游只有讲解的服务,游客难以自由行动的技术问题。
-
公开(公告)号:CN112836056A
公开(公告)日:2021-05-25
申请号:CN202110266934.X
申请日:2021-03-12
Abstract: 本发明公开了一种基于网络特征融合的文本分类方法,针对传统卷积神经网络无法关注文本上下文含义以及传统循环神经网络存在的短时记忆和梯度消失问题,提出了基于Res2Net和BiLSTM网络融合的模型,能够有效地解决上述网络存在的问题,更好地对文本进行分类。本发明利用多尺度残差网络Res2Net对文本的局部特征进行提取,同时结合双向长短时记忆网络BiLSTM对文本上下文特征进行提取,同时在BiLSTM网络层后加上传统机器学习方法——条件随机场CRF来预测标签与标签之间的关系,达到文本正确分类的效果。本发明在不过多增加网络参数的情况下,通过融合能够有效地提升文本分类的准确率。
-
公开(公告)号:CN111460332B
公开(公告)日:2020-10-30
申请号:CN202010336442.9
申请日:2020-04-26
Applicant: 成都信息工程大学 , 成都申达森科技有限公司
Inventor: 乔少杰 , 韩楠 , 罗佳 , 陈亮 , 肖月强 , 元昌安 , 范勇强 , 冉先进 , 彭京 , 甘戈 , 孙科 , 宋学江 , 覃晓 , 李斌勇 , 许源平 , 郑皎凌 , 张吉烈 , 张永清
IPC: G06F16/9537 , G06F16/9536 , G06F17/18 , G06Q50/00
Abstract: 本发明公开了一种基于用户生活轨迹的社会关系评估方法,具体为:采集若干用户的生活轨迹,将其分为训练集和测试集,并计算训练集中两两用户之间的轨迹相似度;根据训练集中用户关系构建地理位置因子图中的节点;分别构建基本特征因子函数、二元相似度因子函数和三元相似度因子函数;并根据因子函数构建地理位置因子图的全局概率分布模型;对全局概率分布模型进行训练,根据全局概率分布模型并通过最大和积传播算法对测试集中未知标签进行预测,得到社会关系评估结果。本发明提出了使用用户的轨迹相似度来表示用户位置信息间的关联,借助用户的位置关联预测用户之间的社会关系,使用户间社会关系的预测和识别更加精准。
-
公开(公告)号:CN111259133A
公开(公告)日:2020-06-09
申请号:CN202010054209.1
申请日:2020-01-17
Applicant: 成都信息工程大学 , 四川省金科成地理信息技术有限公司 , 成都探码科技有限公司
Inventor: 乔少杰 , 韩楠 , 沈杰 , 宋学江 , 程维杰 , 魏军林 , 张小辉 , 丁超 , 肖月强 , 陈文林 , 李斌勇 , 张吉烈 , 张永清 , 何林波 , 元昌安 , 彭京 , 周凯 , 余华 , 范勇强 , 冉先进
IPC: G06F16/335 , G06F16/36 , G06F16/9535
Abstract: 本发明公开了一种融合多信息的个性化推荐方法,该方法包括采用word2vec算法和FM算法获得用户与项目的相似度,采用RippleNet算法得到用户与项目的预测点击概率,采用动态融合算法得到预测评分,基于预测评分为用户提供个性化推荐列表。本发明将知识图谱与评论内容作为多源数据,并使用不同算法对数据进行处理,并采用动态融合方法进行有效结合,为用户提供更精准的个性化推荐服务,能够实现更好的推荐效果,并且可以有效地解决数据稀疏带来的推荐准确性降低的问题。
-
公开(公告)号:CN110969260A
公开(公告)日:2020-04-07
申请号:CN201911007816.6
申请日:2019-10-22
Applicant: 成都信息工程大学 , 泸州市城投智慧科技发展有限责任公司
Inventor: 乔少杰 , 刘定祥 , 孙科 , 韩楠 , 魏军林 , 张永清 , 许源平 , 彭珍妮 , 王伟 , 元昌安 , 冉先进 , 范勇强 , 彭京 , 周凯 , 黄萍 , 郑皎凌 , 何晓曦 , 李斌勇 , 覃晓 , 张吉烈
Abstract: 本发明涉及机器学习技术领域,提供了一种不平衡数据过采样方法,基于三角形重心特点,包括:S1、获取样本集,并对所述样本集进行正负样本划分,得到正样本集和负样本集;S2、获取正样本集坐标点位信息,根据所述正样本集坐标点位信息生成均值中心点;S3、识别所述正样本集中每一正样本到均值中心点的马氏距离,按马氏距离大小对所述正样本进行排序得到正样本序列;S4、根据所述正样本序列对正样本集进行分组生成正样本组,识别所述正样本组的重心,将所述重心位置标记为新正样本;S5、将所述新正样本并入至正样本集得到新正样本集,重复步骤S2-S4,得到与负样本数量相平衡的正样本数量;通过上述方法,本发明解决了机器学习中的过拟合现象。
-
公开(公告)号:CN111189459B
公开(公告)日:2023-12-22
申请号:CN202010026328.6
申请日:2020-01-10
Applicant: 成都信息工程大学 , 四川省金科成地理信息技术有限公司 , 成都探码科技有限公司
Inventor: 乔少杰 , 黄振锋 , 甘戈 , 韩楠 , 宋学江 , 魏军林 , 张小辉 , 温敏 , 肖月强 , 程维杰 , 陈权亮 , 李斌勇 , 张永清 , 张吉烈 , 何林波 , 元昌安 , 彭京 , 周凯 , 余华 , 范勇强 , 冉先进
IPC: G01C21/30
Abstract: 本申请实施例提供了一种定位信息与道路匹配的方法和装置,该方法包括:S1.获取待匹配的定位轨迹序列和道路网络数据;步骤S2.获取所述轨迹序列的候选路段;步骤S3.判断所述定位轨迹序列中已匹配点的个数是否大于两个,若是,则用第一匹配算法计算出所述轨迹序列在所述道路网络数据上的匹配轨迹;若否,则用第二匹配算法计算出所述轨迹序列在所述道路网络数据上的匹配轨迹;步骤S4.输出所述匹配轨迹。本申请提供的定位信息与道路匹配的方法和装置,其通过获取浮动车数据和城市道路网络数据,搜索和筛选出合理的候选路段和候选待匹配点,结合所设计两种不同的匹配算法来进行浮动车地图的匹配,实现了大规模浮动车地图匹配的准确性和效率性。(56)对比文件孙庆辉等.路径规划和导航《.空间位置信息服务系统原理和方法》.西安地图出版社,2009,陈林等.情景感知系统《.‘互联网+’智慧校园技术与工程实施》.电子科技大学出版社,2017,Shaojie Qiao.A Self-AdaptiveParameter Selection Trajectory PredictionApproach via Hidden Markov Models《.IEEETRANSACTIONS ON INTELLIGENTTRANSPORTATION SYSTEMS》.2015,第16卷(第1期),乔少杰.一种基于空间编码技术的轨迹特征提取方法《.中国科学:信息科学》.2017,第47卷(第11期),
-
公开(公告)号:CN112836056B
公开(公告)日:2023-04-18
申请号:CN202110266934.X
申请日:2021-03-12
IPC: G06F16/35 , G06F18/2415 , G06F18/25 , G06N3/0442 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于网络特征融合的文本分类方法,针对传统卷积神经网络无法关注文本上下文含义以及传统循环神经网络存在的短时记忆和梯度消失问题,提出了基于Res2Net和BiLSTM网络融合的模型,能够有效地解决上述网络存在的问题,更好地对文本进行分类。本发明利用多尺度残差网络Res2Net对文本的局部特征进行提取,同时结合双向长短时记忆网络BiLSTM对文本上下文特征进行提取,同时在BiLSTM网络层后加上传统机器学习方法——条件随机场CRF来预测标签与标签之间的关系,达到文本正确分类的效果。本发明在不过多增加网络参数的情况下,通过融合能够有效地提升文本分类的准确率。
-
公开(公告)号:CN111259133B
公开(公告)日:2021-02-19
申请号:CN202010054209.1
申请日:2020-01-17
Applicant: 成都信息工程大学 , 四川省金科成地理信息技术有限公司 , 成都探码科技有限公司
Inventor: 乔少杰 , 韩楠 , 沈杰 , 宋学江 , 程维杰 , 魏军林 , 张小辉 , 丁超 , 肖月强 , 陈文林 , 李斌勇 , 张吉烈 , 张永清 , 何林波 , 元昌安 , 彭京 , 周凯 , 余华 , 范勇强 , 冉先进
IPC: G06F16/335 , G06F16/36 , G06F16/9535
Abstract: 本发明公开了一种融合多信息的个性化推荐方法,该方法包括采用word2vec算法和FM算法获得用户与项目的相似度,采用RippleNet算法得到用户与项目的预测点击概率,采用动态融合算法得到预测评分,基于预测评分为用户提供个性化推荐列表。本发明将知识图谱与评论内容作为多源数据,并使用不同算法对数据进行处理,并采用动态融合方法进行有效结合,为用户提供更精准的个性化推荐服务,能够实现更好的推荐效果,并且可以有效地解决数据稀疏带来的推荐准确性降低的问题。
-
公开(公告)号:CN111460332A
公开(公告)日:2020-07-28
申请号:CN202010336442.9
申请日:2020-04-26
Applicant: 成都信息工程大学 , 成都申达森科技有限公司
Inventor: 乔少杰 , 韩楠 , 罗佳 , 陈亮 , 肖月强 , 元昌安 , 范勇强 , 冉先进 , 彭京 , 甘戈 , 孙科 , 宋学江 , 覃晓 , 李斌勇 , 许源平 , 郑皎凌 , 张吉烈 , 张永清
IPC: G06F16/9537 , G06F16/9536 , G06F17/18 , G06Q50/00
Abstract: 本发明公开了一种基于用户生活轨迹的社会关系评估方法,具体为:采集若干用户的生活轨迹,将其分为训练集和测试集,并计算训练集中两两用户之间的轨迹相似度;根据训练集中用户关系构建地理位置因子图中的节点;分别构建基本特征因子函数、二元相似度因子函数和三元相似度因子函数;并根据因子函数构建地理位置因子图的全局概率分布模型;对全局概率分布模型进行训练,根据全局概率分布模型并通过最大和积传播算法对测试集中未知标签进行预测,得到社会关系评估结果。本发明提出了使用用户的轨迹相似度来表示用户位置信息间的关联,借助用户的位置关联预测用户之间的社会关系,使用户间社会关系的预测和识别更加精准。
-
-
-
-
-
-
-
-
-