微表情识别方法、装置与存储介质

    公开(公告)号:CN109271930B

    公开(公告)日:2020-11-13

    申请号:CN201811075329.9

    申请日:2018-09-14

    Abstract: 本发明提供了一种微表情识别方法、装置与存储介质,所述方法,包括:检测预先采集的目标人脸图像的人脸特征,获取所述目标人脸图像的至少五个人脸特征点;根据所述目标人脸图像的人脸特征点以及预设的图像分块规则,对所述目标人脸图像进行切块处理,得到若干个图块;根据所述若干个图块,通过预先建立的卷积神经网络模型,获得微表情分类结果。上述方法依据获取的人脸特征点以及预设的图像分块规则,对所述目标人脸图像进行切块处理,并采用卷积神经网络对切块后的得到的若干个图块进行识别分类,能够有效提高微表情识别的速度、精度,从而大幅度提高微表情识别的工作效率。

    关键术语抽取方法、装置、设备及计算机可读存储介质

    公开(公告)号:CN109885831A

    公开(公告)日:2019-06-14

    申请号:CN201910091177.X

    申请日:2019-01-30

    Inventor: 杜翠凤 蒋仕宝

    Abstract: 本发明公开了一种关键术语抽取方法、装置、设备及计算机可读存储介质,该方法包括:根据预先构建的特定领域术语词典,对文本进行切分处理;利用预设的第一抽取窗口遍历文本,对切分处理后得到的词语进行抽取,获得特定领域的候选术语,根据预先构建的特定领域术语词典,对切分处理后得到的词语进行抽取,获得特定领域的候选术语;通过预先构建的概率主题模型对候选术语进行主题聚类,获得多个主题关联的候选术语及其关联概率;根据每个主题关联的候选术语及其关联概率,确定关键术语,本发明基于特定领域术语词典对文本划分,并采用概率主题模型进行关键术语提取,有效抽取特定领域的关键术语,提高关键术语抽取的准确性。

    微表情识别方法、装置与存储介质

    公开(公告)号:CN109271930A

    公开(公告)日:2019-01-25

    申请号:CN201811075329.9

    申请日:2018-09-14

    Abstract: 本发明提供了一种微表情识别方法、装置与存储介质,所述方法,包括:检测预先采集的目标人脸图像的人脸特征,获取所述目标人脸图像的至少五个人脸特征点;根据所述目标人脸图像的人脸特征点以及预设的图像分块规则,对所述目标人脸图像进行切块处理,得到若干个图块;根据所述若干个图块,通过预先建立的卷积神经网络模型,获得微表情分类结果。上述方法依据获取的人脸特征点以及预设的图像分块规则,对所述目标人脸图像进行切块处理,并采用卷积神经网络对切块后的得到的若干个图块进行识别分类,能够有效提高微表情识别的速度、精度,从而大幅度提高微表情识别的工作效率。

    一种基于哈希算法和邻域图的跨模态检索方法及装置

    公开(公告)号:CN112199531A

    公开(公告)日:2021-01-08

    申请号:CN202011224930.7

    申请日:2020-11-05

    Abstract: 本发明公开了一种基于哈希算法和邻域图的跨模态检索方法及装置,检索方法包括:获取多模态原始样本,对多模态原始样本经过特征变换前后得到的残差值进行最小化处理,得到最小化残差值;根据协同矩阵分解方法学习多模态原始样本之间的潜在关联,并根据潜在关联计算得到多模态原始样本的模态间的语义一致性;采用邻域图的流行学习,计算得到多模态原始样本的模态内的语义一致性;将最小化残差值、模态间的语义一致性和模态内的语义一致性,结合避免过度拟合的正则化计算得到目标函数。本发明实施例通过综合考虑多模态的全局特征和模态间的局部特征,计算得到用于跨模态检索的目标函数,以实现提高跨模态检索的全面性和准确性。

    网络入侵检测模型的构建方法、装置、设备及存储介质

    公开(公告)号:CN114710325B

    公开(公告)日:2023-09-15

    申请号:CN202210263547.5

    申请日:2022-03-17

    Inventor: 杜翠凤 蒋仕宝

    Abstract: 本发明公开了一种网络入侵检测模型的构建方法、装置、设备及存储介质,该方法包括:获取网络入侵检测的第一流量数据集;其中,所述第一流量数据集包括多个连续采样周期的流量时序数据;对所述第一流量数据集进行预处理,得到第二流量数据集;通过EfficientNet对所述第二流量数据集进行特征提取,得到初始特征图;基于域随机化方法和所述初始特征图合成多个仿真特征图,以构成仿真特征图集;通过所述初始特征图和所述仿真特征图集对预先构建的深度学习模型进行训练,得到网络入侵检测模型。采用本发明实施例能够提高检测数据量较少的网络攻击的准确率。

    网络入侵检测模型的构建方法、装置、设备及存储介质

    公开(公告)号:CN114710325A

    公开(公告)日:2022-07-05

    申请号:CN202210263547.5

    申请日:2022-03-17

    Inventor: 杜翠凤 蒋仕宝

    Abstract: 本发明公开了一种网络入侵检测模型的构建方法、装置、设备及存储介质,该方法包括:获取网络入侵检测的第一流量数据集;其中,所述第一流量数据集包括多个连续采样周期的流量时序数据;对所述第一流量数据集进行预处理,得到第二流量数据集;通过EfficientNet对所述第二流量数据集进行特征提取,得到初始特征图;基于域随机化方法和所述初始特征图合成多个仿真特征图,以构成仿真特征图集;通过所述初始特征图和所述仿真特征图集对预先构建的深度学习模型进行训练,得到网络入侵检测模型。采用本发明实施例能够提高检测数据量较少的网络攻击的准确率。

    一种基于残差重构的视频仿真方法及装置

    公开(公告)号:CN112543339A

    公开(公告)日:2021-03-23

    申请号:CN202011432932.5

    申请日:2020-12-09

    Abstract: 本发明公开了一种基于残差重构的视频仿真方法及装置,方法包括:基于初始采样间隔,通过稀疏表示算法对待处理视频进行解码,分别得到采样前视频帧、采样后视频帧和采样时刻视频帧;进行矢量化处理;计算采样时刻测量矢量的预测值,并得到对应的自适应采样间隔;基于初始采样间隔、自适应采样间隔对采样时刻测量矢量进行重构;对重构后的采样时刻测量矢量进行解码,得到自适应采样时刻视频帧;以解码后得到的自适应采样时刻视频帧进行仿真输出。本发明实施例提供的基于残差重构的视频仿真方法及装置,通过基于残差重构的特定算法,使得视频仿真能够根据实时图像调整不同的采样间隔,提升了视频仿真的效果,推进了仿真采样的智能化进程。

Patent Agency Ranking