一种基于FasterR-CNN和GRCNN的机械臂智能抓取方法及系统

    公开(公告)号:CN116673962A

    公开(公告)日:2023-09-01

    申请号:CN202310848848.9

    申请日:2023-07-12

    Applicant: 安徽大学

    Abstract: 本发明属于机器人智能控制技术领域,具体涉及一种基于Faster R‑CNN和GRCNN的机械臂智能抓取方法及系统;方法包括Faster R‑CNN网络模型检测物体类别和位置,再将检测到的目标物体对应像素的深度图像部分提取出来后,经过处理输入到GRCNN网络模型中,GRCNN网络模型输出置信度最高的像素点作为抓取点,这组置信度最高的抓取点经过相机坐标系和机器人坐标系的转换后,得到机器人坐标系下的抓取位姿表示模型。最后这组抓取位姿表示模型被送入到机械臂的控制器中,控制器控制机械臂执行抓取任务;本发明实现机械臂与外界环境的交互感知,适用于大量未知物体的抓取检测。机械臂具有自主识别和智能决策能力,提升抓取检测的成功率,整个的抓取方案具有任务泛化性。

Patent Agency Ranking