-
公开(公告)号:CN111488760B
公开(公告)日:2023-05-02
申请号:CN201910073611.1
申请日:2019-01-25
Applicant: 复旦大学
IPC: G06V40/10 , G06V10/46 , G06V10/774 , G06V10/762 , G06V10/82 , G06N3/0464
Abstract: 本发明涉及一种基于深度多示例学习的少样本行人重识别方法,包括三个阶段:网络预训练阶段、数据集扩充阶段、网络微调阶段。行人重识别特征提取子网络预训练之后,利用行人关键点特征区域交换算法进行数据扩充;利用扩充的数据集对行人重识别特征提取子网络和特征聚合子网络进行微调;迭代重复数据集扩充和网络微调,直到特征提取子网络和特征聚合子网络收敛。一旦训练完成,即实现了利用少样本将原始域上的行人重识别模型迁移扩展至目标域上。本发明在给定目标域少量学习样本的前提上,能有效地将行人重识别模型迁移扩展到目标域监控网络中,具有精确度高、鲁棒性好、扩展性佳、可迁移的优点。
-
公开(公告)号:CN114463737A
公开(公告)日:2022-05-10
申请号:CN202210107083.9
申请日:2022-01-28
Applicant: 复旦大学
IPC: G06V20/64 , G06V10/26 , G06V10/44 , G06V10/764 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于3D建模中隐式表示的3D目标检测方法和系统,方法包括采集点云数据并进行预处理,得到预处理点云数据;根据得到的预处理点云数据,在点云维度和体素维度上分别提取出对应的特征,并将这两种特征结合并转换为鸟瞰图特征;对鸟瞰特征图上的每个像素点进行坐标和特征偏移,筛选并采样出最大概率的候选中心点;使用隐式函数对以候选中心点为单位的周围局部三维空间内包含的所有点赋值,并根据赋予的结果生成目标边界框;通过将生成的目标边界框内的特征进行结合对边界框进行优化。与现有技术相比,本发明具有速度快、精确度高、鲁棒性好等优点,适用于三维场景下的目标检测和分割等应用。
-