-
公开(公告)号:CN110674673A
公开(公告)日:2020-01-10
申请号:CN201910697979.5
申请日:2019-07-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出了一种视频关键帧抽取方法、装置和存储介质,用以减少视频处理过程中的冗余信息,提高视频处理速度。所述视频关键帧抽取方法,包括:从待分析视频中提取I帧;针对提取的每一I帧,利用深度哈希网络确定其对应的深度哈希码,所述深度哈希网络为利用预先生成的图像样本对进行训练得到的;根据各I帧对应的深度哈希码,分别确定两两I帧深度哈希码之间的汉明距离;根据两两I帧深度哈希码之间的汉明距离,对提取的I帧进行聚类;针对每一聚类,分别确定该聚类中包含的每一I帧的信息熵;从每一聚类中,提取信息熵最大的I帧组成所述待分析视频的关键帧。
-
公开(公告)号:CN110610230A
公开(公告)日:2019-12-24
申请号:CN201910698120.6
申请日:2019-07-31
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种台标检测方法、装置及可读存储介质,该方法包括如下步骤:获取台标数据集,并对所述台标数据集进行分组获得台标训练集;构建多损失融合的孪生神经网络,并基于所述台标训练集对所构建的多损失融合的孪生神经网络进行训练获得训练后的多损失融合的孪生神经网络;通过所述训练后的多损失融合的孪生神经网络对待测台标进行检测。本发明方法通过构建孪生神经网络框架,很好地消除了样本数量不足对训练网络带来的影响,可以更好地检测未知的新的种类的敏感台标。
-
公开(公告)号:CN116824710B
公开(公告)日:2025-04-29
申请号:CN202310587326.8
申请日:2023-05-23
Applicant: 中国科学院自动化研究所 , 人民中科(北京)智能技术有限公司
IPC: G06V40/40 , G06V40/16 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种伪造人脸鉴别方法、装置、设备和存储介质,将待鉴别图像输入人脸鉴别模型;获取人脸鉴别模型输出的待鉴别图像对应的鉴别结果;其中,人脸鉴别模型用于获取待鉴别图像的面部单元一致性特征,并基于待鉴别图像的面部单元一致性特征确定待鉴别图像对应的鉴别结果;待鉴别图像的面部单元一致性特征用于表征待鉴别图像的各面部单元相关区域之间的相关性;人脸鉴别模型是基于样本图像和样本图像对应的鉴别标签训练得到的,提升了对于未知造假方法合成的图像的鉴别效果。
-
公开(公告)号:CN116778376A
公开(公告)日:2023-09-19
申请号:CN202310530291.4
申请日:2023-05-11
Applicant: 中国科学院自动化研究所
IPC: G06V20/40 , G06V10/764 , G06V10/774 , G06V10/42 , G06V10/80
Abstract: 本发明提供一种内容安全检测模型训练方法、检测方法和装置,其中训练方法包括:获取第一样本视频,并提取第一样本视频的压缩域信息;提取第一样本视频中的各帧图像在标准色域下的多源特征;基于第一样本视频的压缩域信息和标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,得到训练完成的内容安全检测模型。本发明提供的内容安全检测模型训练方法、检测方法和装置,相比于现有的逐帧提取标准色域信息,极大提高了信息提取效率,并利用标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,从而提升了压缩域内容安全检测的性能,能够同时兼顾效率和性能。
-
公开(公告)号:CN116778376B
公开(公告)日:2024-03-22
申请号:CN202310530291.4
申请日:2023-05-11
Applicant: 中国科学院自动化研究所
IPC: G06V20/40 , G06V10/764 , G06V10/774 , G06V10/42 , G06V10/80
Abstract: 本发明提供一种内容安全检测模型训练方法、检测方法和装置,其中训练方法包括:获取第一样本视频,并提取第一样本视频的压缩域信息;提取第一样本视频中的各帧图像在标准色域下的多源特征;基于第一样本视频的压缩域信息和标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,得到训练完成的内容安全检测模型。本发明提供的内容安全检测模型训练方法、检测方法和装置,相比于现有的逐帧提取标准色域信息,极大提高了信息提取效率,并利用标准色域下的多源特征,对初始模型进行跨模态蒸馏学习,从而提升了压缩域内容安全检测的性能,能够同时兼顾效率和性能。
-
公开(公告)号:CN111612143B
公开(公告)日:2023-12-19
申请号:CN202010440475.8
申请日:2020-05-22
Applicant: 中国科学院自动化研究所
IPC: G06N3/082 , G06N3/084 , G06N3/0495 , G06N3/0464
Abstract: 本发明涉及一种深度卷积神经网络的压缩方法及系统,所述压缩方法包括:根据滤波器重要性选择方式和/或模型压缩率,确定待压缩深度卷积神经网络中不重要的滤波器;对不重要的滤波器施加渐进式稀疏约束,作为正则项加入到网络训练的损失函数中,得到优化损失函数;根据正则项,采用阈值迭代算法及反向传播算法联合求解,得到待压缩深度卷积神经网络的更新参数;基于所述优化损失函数及更新参数,获得具有滤波器稀疏形式的卷积神经网络模型;利用结构化剪枝算法,对所述具有滤波器稀疏形式的卷积神经网络模型进行剪枝,得到网络精度较高的压缩后的卷积神经网络模型。
-
公开(公告)号:CN118296446A
公开(公告)日:2024-07-05
申请号:CN202410728250.0
申请日:2024-06-06
Applicant: 中国科学院自动化研究所
IPC: G06F18/24 , G06F18/22 , G06V10/762
Abstract: 本发明提供一种音视频内容风险识别方法、装置、电子设备和存储介质,属于多媒体内容安全识别领域,该方法包括:构建多模态特征推理模型;构建风险样例知识库,所述风险样例知识库中包含至少一个风险样例分别对应的多模态特征向量,所述至少一个风险样例分别属于至少一种风险类别;将待识别音视频输入所述多模态特征推理模型,获得所述待识别音视频的多模态特征向量;将所述待识别音视频的多模态特征向量与所述风险样例知识库中的多模态特征向量进行相似度计算,并基于相似度输出所述待识别音视频的风险类别,可以提高风险内容识别的精准率和召回率。
-
公开(公告)号:CN115311475A
公开(公告)日:2022-11-08
申请号:CN202210752086.8
申请日:2022-06-28
Applicant: 中国科学院自动化研究所 , 中国国家铁路集团有限公司
Abstract: 本发明提供一种基于内容安全的图像识别方法、装置、设备和存储介质,涉及计算机视觉技术领域,所述方法包括:获取待识别图像;将待识别图像输入至多尺度纹理感知模型,输出用于表征图像是否伪造的图像种类识别结果;其中,多尺度纹理感知模型是基于图像样本数据以及对应的图像种类标签进行训练后得到的,多尺度纹理感知模型用于基于待识别图像的多尺度纹理特征任意两通道之间的相关性,对待识别图像进行种类识别。本发明可结合多尺度纹理特征以及各特征不同通道之间的细微差异,以提高图像种类识别精准度,且提高鲁棒性和泛化性。
-
公开(公告)号:CN112991476B
公开(公告)日:2021-09-28
申请号:CN202110190015.9
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于图像识别领域,具体涉及了一种基于深度压缩域特征的场景分类方法、系统、装置,旨在解决现有的场景分类方法由于图像的分辨率高数据庞大而导致的计算资源浪费、实时性差以及存储空间占用过多的问题。本发明包括:通过JPEG压缩方法对待测图像进行部分解码,获得待测图像的三通道DCT系数,通过反卷积调节所述三通道DCT系数的尺寸,获得尺寸匹配的三通道DCT系数,将所述尺寸匹配的三通道DCT系数进行拼接融合,获取深度压缩域特征,基于所述深度压缩域特征,通过训练好的压缩域特征分类网络,获取所述待测图像的场景类别。本发明避免了将图像全部解码造成额外计算成本增加和存储介质浪费,降低了时间消耗和计算资源消耗。
-
公开(公告)号:CN112991476A
公开(公告)日:2021-06-18
申请号:CN202110190015.9
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于图像识别领域,具体涉及了一种基于深度压缩域特征的场景分类方法、系统、装置,旨在解决现有的场景分类方法由于图像的分辨率高数据庞大而导致的计算资源浪费、实时性差以及存储空间占用过多的问题。本发明包括:通过JPEG压缩方法对待测图像进行部分解码,获得待测图像的三通道DCT系数,通过反卷积调节所述三通道DCT系数的尺寸,获得尺寸匹配的三通道DCT系数,将所述尺寸匹配的三通道DCT系数进行拼接融合,获取深度压缩域特征,基于所述深度压缩域特征,通过训练好的压缩域特征分类网络,获取所述待测图像的场景类别。本发明避免了将图像全部解码造成额外计算成本增加和存储介质浪费,降低了时间消耗和计算资源消耗。
-
-
-
-
-
-
-
-
-