-
公开(公告)号:CN116702094B
公开(公告)日:2023-12-22
申请号:CN202310957274.9
申请日:2023-08-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/26 , G06F18/25 , G06F18/213 , G06F18/22 , G06F18/27 , G06N3/045 , G06N3/044 , G06N3/0442 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及数据处理技术领域,提供一种群体应用偏好特征表示方法,其中方法包括:获取用户的交互数据;基于多模态预训练模型,提取所述交互数据的特征表示;基于所述交互数据的特征表示,确定所述交互数据的群体应用偏好特征;基于所述群体应用偏好特征,对所述用户进行画像。本发明提供的群体应用偏好特征表示方法,能够自适应的针对任意的纯文本数据、纯图像数据、图文混合数据提取联合特征,实现对多模态数据的分析处理,在图文模态下,可以增加特征提取的语义交互能力,使得到的群体应用偏好特征更准确,从而提高用户画像的质量。
-
公开(公告)号:CN114116172A
公开(公告)日:2022-03-01
申请号:CN202111454126.2
申请日:2021-12-01
Applicant: 恒安嘉新(北京)科技股份公司 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种流量数据采集方法、装置、设备及存储介质,包括:接收多个数据采集策略,根据各数据采集策略对应的通信层,将各数据采集策略分别传输至对应的层级处理模块;所述数据采集策略根据业务需求预先设定;通过各层级处理模块执行多个数据采集策略,并实时对DPI系统运行过程中占用的资源进行监控,得到资源占用结果;如果资源占用结果超过预设阈值,则通过各层级处理模块根据各数据采集策略对应的优先级,在多个数据采集策略中依次确定待执行的目标采集策略,并依次执行目标采集策略。本发明实施例的技术方案可以实现移动互联网中的流量数据按需采集,满足业务需求和资源占用之间的平衡。
-
公开(公告)号:CN110134947B
公开(公告)日:2021-03-26
申请号:CN201910307654.1
申请日:2019-04-17
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明提出一种基于不平衡多源数据的情感分类方法,包括:获取来自多个数据源的训练数据,其中训练数据包含多条文本数据,每条文本数据具有情感类型标签和其对应的数据源;按数据源对训练数据进行分类,以集合每个数据源对应的文本数据作为第一数据集,根据每个第一数据集中各情感类型标签的数量,统计每个第一数据集中情感类型的标准差,选择标准差最小的第一数据作为预训练集,其余第一数据集作为后续训练集;以预训练集训练神经网络模型的权值直到损失函数收敛,输出神经网络模型作为预分类模型,以后续训练集继续训练预分类模型直到损失函数收敛,输出预分类模型作为最终分类模型;将待情感分类文本数据输入最终分类模型,得到其情感类型。
-
公开(公告)号:CN114116172B
公开(公告)日:2024-12-31
申请号:CN202111454126.2
申请日:2021-12-01
Applicant: 恒安嘉新(北京)科技股份公司 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种流量数据采集方法、装置、设备及存储介质,包括:接收多个数据采集策略,根据各数据采集策略对应的通信层,将各数据采集策略分别传输至对应的层级处理模块;所述数据采集策略根据业务需求预先设定;通过各层级处理模块执行多个数据采集策略,并实时对DPI系统运行过程中占用的资源进行监控,得到资源占用结果;如果资源占用结果超过预设阈值,则通过各层级处理模块根据各数据采集策略对应的优先级,在多个数据采集策略中依次确定待执行的目标采集策略,并依次执行目标采集策略。本发明实施例的技术方案可以实现移动互联网中的流量数据按需采集,满足业务需求和资源占用之间的平衡。
-
公开(公告)号:CN116702094A
公开(公告)日:2023-09-05
申请号:CN202310957274.9
申请日:2023-08-01
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/26 , G06F18/25 , G06F18/213 , G06F18/22 , G06F18/27 , G06N3/045 , G06N3/044 , G06N3/0442 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及数据处理技术领域,提供一种群体应用偏好特征表示方法,其中方法包括:获取用户的交互数据;基于多模态预训练模型,提取所述交互数据的特征表示;基于所述交互数据的特征表示,确定所述交互数据的群体应用偏好特征;基于所述群体应用偏好特征,对所述用户进行画像。本发明提供的群体应用偏好特征表示方法,能够自适应的针对任意的纯文本数据、纯图像数据、图文混合数据提取联合特征,实现对多模态数据的分析处理,在图文模态下,可以增加特征提取的语义交互能力,使得到的群体应用偏好特征更准确,从而提高用户画像的质量。
-
公开(公告)号:CN117149949B
公开(公告)日:2024-12-17
申请号:CN202311059658.5
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/335 , G06F16/35 , G06F18/23
Abstract: 本发明公开了一种融合多源信息的人名消歧方法及装置,所述方法包括:将所有文本划分为若干个类;基于同名作者对应的机构名称、文本共同作者和文本主题内容,分别对每一类文本进行聚类,以得到该类文本的机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果;基于簇内机构信息及文本的共现信息,对机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果进行融合,得到该类文本的初步聚类结果;提取初步聚类结果中的单簇文本,并基于所述单簇文本与该类文本中其他文本的相似度进行单簇文本的融合后,得到人名消歧结果。本发明可以实现了更好的消歧准确率。
-
公开(公告)号:CN117371423A
公开(公告)日:2024-01-09
申请号:CN202311076561.5
申请日:2023-08-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/20 , G06N3/0442 , G06N3/09
Abstract: 本发明公开了一种不平衡条件下的文本分类器生成方法和装置,所述方法包括:获取不平衡数据,基于所述不平衡数据构建训练集;生成特征向量,将特征向量作为输入数据;将输入数据输入分类网络,分类网络包括依次相连的卷积层、池化层、LSTM层、GRU层、全连接层;输入数据经所述分类网络处理,得到中间分类结果,所述中间分类结果是未经完全训练,但是已有分类效果的结果;将中间分类结果与真实标签输入损失函数,得到中间结果对应的损失值,若损失值小于预定义的损失值,则当前的分类网络结合当前的权重作为构建完毕的分类器。本方法能在训练过程中减少分对样本的损失在总的损失中的权重,使得分类器的优化更偏向分错的样本。
-
公开(公告)号:CN117271765A
公开(公告)日:2023-12-22
申请号:CN202311059507.X
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/30 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多语义特征融合的文本分类方法及装置,所述方法包括:获取待分类的文本,将所述待分类的文本进行预处理,得到处理后的文本;将词级粒度向量输入训练完毕的词级语义特征提取模型,得到词级语义特征;将句子级粒度向量输入训练完毕的句子级语义特征提取模型,得到句子级语义特征;基于文章级向量对所述处理后的文本进行特征提取,得到文本级语义特征;将所述词级语义特征、句子级语义特征以及文本级语义特征进行特征拼接融合,得到融合后特征,使用分类器对所述融合后特征进行分类。本方法从词粒度、句子粒度和文章粒度等多个层面对文本进行精细语义建模,利用文本的多语义融合特征进行文本分类,提高了文本分类的准确率。
-
公开(公告)号:CN117194773A
公开(公告)日:2023-12-08
申请号:CN202311061729.5
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F16/9538 , G06F16/35 , G06F16/532
Abstract: 本发明公开了一种基于多模态特征的网站识别方法及装置,所述方法包括:获取处理后的网页信息;得到对应的网页文本特征;获取网页用户特征;获取网页资源信息特征;获取所述网页信息对应的网页图片快照,由网页图片处理模块对所述网页图片快照提取网页图片特征;将所述网页文本特征、网页用户特征、网页资源信息特征及网页图片特征进行特征融合,得到多模态融合特征,由多模态识别模型对所述多模态融合特征进行识别。本方法利用多模态识别模型对网站进行分类,有效提高了对不良网站识别的准确率。
-
公开(公告)号:CN117149949A
公开(公告)日:2023-12-01
申请号:CN202311059658.5
申请日:2023-08-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F16/335 , G06F16/35 , G06F18/23
Abstract: 本发明公开了一种融合多源信息的人名消歧方法及装置,所述方法包括:将所有文本划分为若干个类;基于同名作者对应的机构名称、文本共同作者和文本主题内容,分别对每一类文本进行聚类,以得到该类文本的机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果;基于簇内机构信息及文本的共现信息,对机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果进行融合,得到该类文本的初步聚类结果;提取初步聚类结果中的单簇文本,并基于所述单簇文本与该类文本中其他文本的相似度进行单簇文本的融合后,得到人名消歧结果。本发明可以实现了更好的消歧准确率。
-
-
-
-
-
-
-
-
-