一种复杂场景下特定标志物检测系统

    公开(公告)号:CN116935117A

    公开(公告)日:2023-10-24

    申请号:CN202310887423.9

    申请日:2023-07-19

    Abstract: 本发明涉及标志物检测系统领域,尤其为一种复杂场景下特定标志物检测系统,包括:收集模块:用于通过网络爬虫技术对特定标志物图片进行收集,获得特定标志物图片;处理模块:用于对收集模块收集的特定标志物图片进行图片预处理,获得预处理数据;分类器训练模块:用于根据处理模块处理得到的预处理数据进行模型训练,得到自动分类模型;分类模块:用于连接自动分类模型,对特定标志物图片进行分类。本发明通过颜色和形状的标志物检测算法,从色彩增强、颜色分割和形状分类三个方面提高特定标志物检测系统算法的鲁棒性,通过比较RGB和HSV颜色分割效果,选取效果更好的HSV颜色分割,在形状分类中不仅仅使用简单的SVM模型训练而且同时使用Contourlet变化提高算法的鲁棒性使的算法预测效果更好,保证出现差错在系统允许的范围内。

    一种融合多源信息的人名消歧方法及装置

    公开(公告)号:CN117149949B

    公开(公告)日:2024-12-17

    申请号:CN202311059658.5

    申请日:2023-08-22

    Abstract: 本发明公开了一种融合多源信息的人名消歧方法及装置,所述方法包括:将所有文本划分为若干个类;基于同名作者对应的机构名称、文本共同作者和文本主题内容,分别对每一类文本进行聚类,以得到该类文本的机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果;基于簇内机构信息及文本的共现信息,对机构名第一聚类结果、共同作者第一聚类结果和主题内容第一聚类结果进行融合,得到该类文本的初步聚类结果;提取初步聚类结果中的单簇文本,并基于所述单簇文本与该类文本中其他文本的相似度进行单簇文本的融合后,得到人名消歧结果。本发明可以实现了更好的消歧准确率。

    一种改进apriori的频繁有序项集挖掘方法

    公开(公告)号:CN117633092A

    公开(公告)日:2024-03-01

    申请号:CN202311358101.1

    申请日:2023-10-19

    Abstract: 一种改进apriori的频繁有序项集挖掘方法,包括:采取项为首、特征为尾拼接的方式生成新项集,以发现数据中频繁出现的连续有序项集,而不是无序的关联规则;在候选项筛选中,加入项预判断,减少对事务集的扫描次数;另外,还采用记录项事务集的方式避免了对全部数据集的频繁扫描,提高了算法的时间性能。该方法有效解决了Apriori算法无法用于发现频繁有序项集,以及候选集筛选过程中频繁扫描整个事务集带来的时间开销巨大的问题。

    一种不平衡条件下的文本分类器构建方法和装置

    公开(公告)号:CN117371423A

    公开(公告)日:2024-01-09

    申请号:CN202311076561.5

    申请日:2023-08-24

    Abstract: 本发明公开了一种不平衡条件下的文本分类器生成方法和装置,所述方法包括:获取不平衡数据,基于所述不平衡数据构建训练集;生成特征向量,将特征向量作为输入数据;将输入数据输入分类网络,分类网络包括依次相连的卷积层、池化层、LSTM层、GRU层、全连接层;输入数据经所述分类网络处理,得到中间分类结果,所述中间分类结果是未经完全训练,但是已有分类效果的结果;将中间分类结果与真实标签输入损失函数,得到中间结果对应的损失值,若损失值小于预定义的损失值,则当前的分类网络结合当前的权重作为构建完毕的分类器。本方法能在训练过程中减少分对样本的损失在总的损失中的权重,使得分类器的优化更偏向分错的样本。

    一种基于多语义特征融合的文本分类方法和装置

    公开(公告)号:CN117271765A

    公开(公告)日:2023-12-22

    申请号:CN202311059507.X

    申请日:2023-08-22

    Abstract: 本发明公开了一种基于多语义特征融合的文本分类方法及装置,所述方法包括:获取待分类的文本,将所述待分类的文本进行预处理,得到处理后的文本;将词级粒度向量输入训练完毕的词级语义特征提取模型,得到词级语义特征;将句子级粒度向量输入训练完毕的句子级语义特征提取模型,得到句子级语义特征;基于文章级向量对所述处理后的文本进行特征提取,得到文本级语义特征;将所述词级语义特征、句子级语义特征以及文本级语义特征进行特征拼接融合,得到融合后特征,使用分类器对所述融合后特征进行分类。本方法从词粒度、句子粒度和文章粒度等多个层面对文本进行精细语义建模,利用文本的多语义融合特征进行文本分类,提高了文本分类的准确率。

Patent Agency Ranking