-
公开(公告)号:CN115828277A
公开(公告)日:2023-03-21
申请号:CN202211327183.9
申请日:2022-10-25
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本申请提供一种数据预测方法、装置、电子设备及存储介质。该方法包括:获取原始明文数据和待预测明文数据;利用根据全同态加密技术得到的公钥对原始明文数据加密以确定原始密文数据,并利用公钥对待预测明文数据加密以确定待预测密文数据;利用原始密文数据训练得到预测模型;根据预测模型对待预测密文数据进行预测以确定预测密文数据;利用根据全同态加密技术得到的私钥对预测密文数据进行解密以确定预测明文数据。本申请全过程中的数据均通过全同态加密技术进行加密,在神经网络模型的训练以及数据预测过程中都可以有效的保证用户的隐私数据不被泄露,为数据安全性提供了保障。
-
公开(公告)号:CN114915650A
公开(公告)日:2022-08-16
申请号:CN202210430295.0
申请日:2022-04-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L67/14 , H04L65/1104 , H04L65/65
Abstract: 本发明公开一种基于网元信息聚合的VoIP服务观测视角的判定方法及系统,涉及互联网语音传输服务领域,通过在单一观测点下对被动流量中VoIP网元信息进行聚合分析,进而判断其服务观测位置,可在全局观测点下提供各VoIP服务网元的相关信息,并为全局VoIP会话链路还原提供有效参考。
-
公开(公告)号:CN119274543A
公开(公告)日:2025-01-07
申请号:CN202411113422.X
申请日:2024-08-14
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及声学动态提取技术领域,具体地说,涉及一种基于深度神经网络的声学特征动态提取方法。其包括以下步骤:S1、对音频数据进行预处理,将音频数据分帧;S2、将分帧后的音频信号进行傅里叶变换,使其从时域信号转换到频域信号并得到频谱图;S3、对频谱图进行预处理,将预处理后频谱图作为深度神经网络的输入;S4、在深度神经网络中使用一阶和二阶差分参数实现动态特征提取,再将一阶和二阶差分参数组合成特征向量输入深度神经网络;S5、将提取的特征序列通过序列标注的方法输出音频信号中的时间变化信息;深度神经网络不仅能够自动提取声学特征,还能捕捉这些特征在时间序列上的动态变化,有利于对声学场景的理解和分类准确。
-
公开(公告)号:CN117593679A
公开(公告)日:2024-02-23
申请号:CN202311340257.7
申请日:2023-10-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V20/40 , G06V40/16 , G06V10/764 , G06V10/25 , G06V10/82 , G06N3/084 , G06N3/0499
Abstract: 本发明提供一种伪造视频检测方法、装置、电子设备及存储介质,涉及计算机技术领域,方法包括:基于待检测视频,确定待检测视频对应的第一判别特征向量和第二判别特征向量;第一判别特征向量表示待检测视频中每帧人脸图像之间的时域特征信息;第二判别特征向量表示待检测视频中每帧人脸图像之间的频域特征信息;基于第一判别特征向量和第二判别特征向量,确定待检测视频对应的目标特征向量;目标特征向量表示融合时域特征信息和频域特征信息的特征信息;基于目标特征向量,确定待检测视频的检测结果。通过时域特征信息和频域特征信息的融合,能够准确确定待检测视频的检测结果,提升了待检测视频的检测精度。
-
公开(公告)号:CN116778910A
公开(公告)日:2023-09-19
申请号:CN202310505872.2
申请日:2023-05-06
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/02 , G10L15/06 , G10L15/16 , G10L15/28 , G06F18/2135 , G06F18/241 , G06N3/0464 , G06N3/08
Abstract: 本申请提供了一种语音检测方法,包括:获取目标语音,将所述目标语音进行预处理,所述预处理包括预加重、分帧及加窗;确定所述预处理后目标语音的第一声道特征、第一声源波特征和多种第一相关特征;基于所述第一声道特征、第一声源波特征和多种第一相关特征确定所述第一主成分特征;将所述第一主成分特征输入训练好的分类器,输出分类的结果,所述分类结果为伪造语音,或自然语音。本申请利用伪造语音在基频处留下的痕迹信息,利用伪造语音与自然语音在声源和声道特征上的差异以实现伪造语音检测。使用主成分分析的方法分别对声源和声道特征进行筛选,选取具有较高相关性的主成分作为特征,减少特征维度和冗余特征,提高模型的泛化能力和效率。
-
公开(公告)号:CN115759043A
公开(公告)日:2023-03-07
申请号:CN202211434726.7
申请日:2022-11-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/211 , G06F40/30 , G06N3/0464 , G06N3/08 , G06F18/241
Abstract: 本发明涉及一种文档级敏感信息检测模型训练及预测方法,所述训练方法包括:获取训练样本集;使用上下文编码器对所述文档中的每个句子进行编码,得到句子中每个单词的上下文表示,根据所述句子中最短依赖路径上的关系和所述上下文语义的关联强度,生成文档级实体注意力权重图;将所述注意力权重图输入到图卷积神经网络中,得到文档级跨句语义结构,根据所述文档级跨句语义结构,更新所述注意力权重图;将更新后的注意力权重图输入到分类器中,得到分类分数;根据所述分类分数与所述标签计算损失值,根据所述损失值对所述上下文编码器、图卷积神经网络和分类器进行训练,得到训练完成的模型。
-
公开(公告)号:CN115083423A
公开(公告)日:2022-09-20
申请号:CN202210861979.6
申请日:2022-07-21
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本公开涉及一种语音鉴别的数据处理方法和装置,涉及语音识别技术、人工智能和计算机技术领域,上述数据处理方法包括:获取待鉴别音频;对上述待鉴别音频进行特征提取,得到初始声学特征;对上述初始声学特征进行量化处理,得到量化声学特征;将上述量化声学特征输入至目标语音鉴别模型中进行处理,输出得到上述待鉴别音频的真伪结果,上述目标语音鉴别模型为参数预训练好且经过量化后的语音鉴别模型。在确保语音真伪鉴别准确率的基础上能够提升语音真伪鉴别的鉴别速度,提升数据处理的效率。
-
公开(公告)号:CN113115363A
公开(公告)日:2021-07-13
申请号:CN202110426526.6
申请日:2021-04-20
Applicant: 国家计算机网络与信息安全管理中心
Inventor: 倪善金 , 万辛 , 黄远 , 孙晓晨 , 宁珊 , 沈亮 , 高圣翔 , 计哲 , 杨晶超 , 张震 , 李鹏 , 石瑾 , 李沁 , 侯炜 , 刁则鸣 , 刘发强 , 孙旭东 , 王立强 , 刘睿霖
IPC: H04W28/02 , H04W28/08 , H04B17/318 , H04B17/382
Abstract: 本公开提供一种异构网络中的移动通信方法、装置与电子设备。异构网络中的移动通信方法包括:确定目标用户在所述目标异构网络中的目标位置确定所述目标位置处于所述目标低功率节点的目标信号范围内,所述目标信号范围是根据所述目标低功率节点与所述宏基站之间的目标信号强度边界和所述目标信号强度边界的目标范围扩展基基确定的将所述目标用户与所述宏基站之间通信切换为所述目标用户与所述目标低功率节点进行通信。本公开实施例提供的技术方案可以通过低功率节点的覆盖边界扩展,降低宏基站的负载,提高异构网络中用户的网络信号强度,增强系统的可靠性和频谱效率。
-
公开(公告)号:CN119091861B
公开(公告)日:2025-05-13
申请号:CN202411149307.8
申请日:2024-08-21
Applicant: 国家计算机网络与信息安全管理中心
IPC: G10L15/02 , G10L15/06 , G10L15/16 , G10L15/183 , G10L15/26 , G10L21/0232 , G10L19/26
Abstract: 本发明涉及语音转写领域,尤其涉及基于人工智能的语音转写加速方法,包括以下步骤:(S1)获取原始语音数据,对获取的原始语音数据先预处理再增强处理,对增强后的语音数据进行特征提取,得到语音特征,基于语音特征进行语音识别,得到识别结果;(S2)根据识别结果生成初步转写文本,通过自适应动态文本优化算法对初步撰写文本进行优化,得到优化后的转写文本,同时在转写过程中通过优化加速算法优化转写效率。本发明公开的基于人工智能的语音转写加速方法,减少了背景噪声和其他干扰,提高了最终撰写文本的准确性和速度。
-
公开(公告)号:CN119091861A
公开(公告)日:2024-12-06
申请号:CN202411149307.8
申请日:2024-08-21
Applicant: 国家计算机网络与信息安全管理中心
IPC: G10L15/02 , G10L15/06 , G10L15/16 , G10L15/183 , G10L15/26 , G10L21/0232 , G10L19/26
Abstract: 本发明涉及语音转写领域,尤其涉及基于人工智能的语音转写加速方法,包括以下步骤:(S1)获取原始语音数据,对获取的原始语音数据先预处理再增强处理,对增强后的语音数据进行特征提取,得到语音特征,基于语音特征进行语音识别,得到识别结果;(S2)根据识别结果生成初步转写文本,通过自适应动态文本优化算法对初步撰写文本进行优化,得到优化后的转写文本,同时在转写过程中通过优化加速算法优化转写效率。本发明公开的基于人工智能的语音转写加速方法,减少了背景噪声和其他干扰,提高了最终撰写文本的准确性和速度。
-
-
-
-
-
-
-
-
-