一种基于深度学习的超高清片源检测方法

    公开(公告)号:CN110545416A

    公开(公告)日:2019-12-06

    申请号:CN201910825906.X

    申请日:2019-09-03

    Abstract: 本发明涉及一种基于深度学习的超高清片源检测方法,其主要技术特点是:对超高清片源进行技术符合性检测;对视频文件封装格式进行检测;对码流文件进行检测;构造色域检测的卷积神经网络模型,对视频片源的色域进行检测;构造转换曲线检测的卷积神经网络模型,对视频片源的转换曲线进行检测。本发明设计合理,其通过检测文件格式封装信息,可检测到文件头中封装的相应信息是否符合技术标准,通过检测编码后的码流信息,可检测到码流中标识的相应信息是否正确,并在片源内容特征检测上有效结合了卷积神经网络模型,可检测视频内容实际的色域类别以及测视频内容实际的转换曲线类别,获得了优良的检测结果,使得系统整体检测准确率大大提高。

Patent Agency Ranking