-
公开(公告)号:CN110781931A
公开(公告)日:2020-02-11
申请号:CN201910971337.X
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种局部特征提取和融合的超高清片源转换曲线检测方法,其技术特点是:构造局部特征提取和融合的超高清片源转换曲线检测网络,构建局部特征提取和融合层,得到用于表征转换曲线特性的局部特征图;使用残差网络作为初始网络,得到整体转换曲线检测网络模型;对曲线检测网络模型进行训练,转换曲线分类模型;将超高清片源图像输入到转换曲线分类模型中,由该转换曲线分类模型输出该图像属于三种转换曲线类别的概率,最终根据概率大小判别图像的转换曲线类别。本发明设计合理,其通过构建特征提取和融合的超高清片源转换曲线检测网络模型,优于目前其他的片源检测算法,系统整体检测准确率较高。
-
公开(公告)号:CN110545416A
公开(公告)日:2019-12-06
申请号:CN201910825906.X
申请日:2019-09-03
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种基于深度学习的超高清片源检测方法,其主要技术特点是:对超高清片源进行技术符合性检测;对视频文件封装格式进行检测;对码流文件进行检测;构造色域检测的卷积神经网络模型,对视频片源的色域进行检测;构造转换曲线检测的卷积神经网络模型,对视频片源的转换曲线进行检测。本发明设计合理,其通过检测文件格式封装信息,可检测到文件头中封装的相应信息是否符合技术标准,通过检测编码后的码流信息,可检测到码流中标识的相应信息是否正确,并在片源内容特征检测上有效结合了卷积神经网络模型,可检测视频内容实际的色域类别以及测视频内容实际的转换曲线类别,获得了优良的检测结果,使得系统整体检测准确率大大提高。
-