-
公开(公告)号:CN112784747A
公开(公告)日:2021-05-11
申请号:CN202110086560.3
申请日:2021-01-22
Applicant: 哈尔滨工业大学
Abstract: 高光谱遥感图像多尺度本征分解方法,涉及遥感图像处理技术领域,针对现有技术中得到的高光谱图像的反射率分量精度低的问题,包括:步骤一:获取高光谱图像,并根据高光谱图像得到N个尺度下的稀疏图矩阵;步骤二:根据N个尺度下的稀疏图矩阵得到多尺度高光谱图像的本征分解矩阵;步骤三:利用高光谱图像,并在光谱维上做几何平均得到之后在空间维上做几何平均得到步骤四:根据本征分解矩阵和得到高光谱的反射率分量。本申请结合多尺度并且综合两个策略得到的高光谱图像的反射率分量相比现有的技术有着更高的精度。
-
公开(公告)号:CN106097252B
公开(公告)日:2019-03-12
申请号:CN201610464694.3
申请日:2016-06-23
Applicant: 哈尔滨工业大学
Abstract: 基于图Graph模型的高光谱图像超像素分割方法,本发明涉及高光谱图像超像素分割方法。本发明是要解决现有超像素图像分割研究大多是针对自然图像或单波段遥感图像存在较大的误差的问题,而提出的基于图Graph模型的高光谱图像超像素分割方法。该方法是通过一、得到降维后的高光谱图像以及高光谱图像的降维结果Y;二、根据高光谱图像的降维结果Y建立图模型,得到赋权图G′;三、设定超像素的初始位置,根据超像素的初始位置利用超像素生成算法生成k个超像素;四、统计每个顶点vi的24邻域中超像素标签的众数,将顶点vi的标签更新为该众数,得到超像素分割的结果等步骤实现的。本发明应用于高光谱图像超像素分割领域。
-
公开(公告)号:CN105913451B
公开(公告)日:2018-09-11
申请号:CN201610464695.8
申请日:2016-06-23
Applicant: 哈尔滨工业大学
IPC: G06T7/10
Abstract: 一种基于图模型的自然图像超像素分割方法,本发明涉及基于图模型的自然图像超像素分割方法。本发明的目的是为了解决现有方法无法在生成大小均匀的超像素同时有较高的超像素分割精度的缺点。步骤一:将输入的自然图像映射为赋权图;步骤二:输入期望生成的K个超像素数目,根据K个超像素数目对步骤一的赋权图进行均匀网格采样,得到K个超像素的初始位置,K取值为正整数;步骤三:在步骤二得到的K个超像素的初始位置的基础上进行聚类,生成超像素;步骤四:对步骤三生成的超像素的边界进行优化,得到超像素分割的结果。本发明用于数字图像处理领域。
-
公开(公告)号:CN112967350B
公开(公告)日:2022-03-18
申请号:CN202110250389.5
申请日:2021-03-08
Applicant: 哈尔滨工业大学
Abstract: 基于稀疏图编码的高光谱遥感图像本征分解方法及系统,涉及图像处理领域。本发明解决了目前的本征分解方法应用于高光谱图像时无法有效地保持地物边界,进而导致针对高光谱图像反射率分量生成的精度低的问题。本发明包括:获得高光谱遥感图像;将高光谱遥感图像在光谱维上做几何平均去除掉由于物体表面几何分布引起的光谱变化得到图像将在空间维上做几何平均,消除由于随空间分布变化的光照引起的光谱变化得到图像根据获得高光谱遥感图像中每个像素的稀疏图编码字典;根据高光谱遥感图像的稀疏图编码字典获得稀疏图的相似度矩阵;根据和稀疏图相似度矩阵获得高光谱图像的反射率分量;所述系统包括:获取模块、构造模块、计算模块、分解模块。
-
公开(公告)号:CN112785693B
公开(公告)日:2022-03-18
申请号:CN202110155512.5
申请日:2021-02-04
Applicant: 哈尔滨工业大学
IPC: G06T17/00
Abstract: 本征高光谱点云生成方法、系统及装置,属于高光谱图像和激光雷达点云融合处理技术领域。为了解决现有的利用基于高光谱图像和激光雷达数据进行点云生成时存在的准确的低的问题。本发明首先通过高光谱图像和激光雷达点云获取本征映射矩阵然后分割提取高光谱图像H中属于建筑表面的像素集合利用集合Q中的像素确定入射光照方向的向量L;最后进行高光谱图像‑激光雷达点云联合本征分解,生成本征高光谱点云。主要用于高光谱点云的生成。
-
公开(公告)号:CN112785583B
公开(公告)日:2022-03-04
申请号:CN202110136395.8
申请日:2021-02-01
Applicant: 哈尔滨工业大学
Abstract: 基于超像素分割的高光谱遥感图像反射率恢复方法,属于遥感图像处理领域,涉及高光谱图像的反射率恢复方法。解决了现有基于对象的反射率恢复方法存在对高光谱图像的反射率恢复精度差的问题,本发明利用输入的高光谱遥感图像做精细超像素分割,获得精细分割的分割矩阵;对输入的高光谱遥感图像做粗略超像素分割,获得粗略分割结果集合;利用精细分割的分割矩阵和粗略分割结果集合,计算约束矩阵;利用精细分割的分割矩阵和约束矩阵迭代求解输入的高光谱遥感图像的反射率。本发明适用于图像反射率恢复。
-
公开(公告)号:CN112967350A
公开(公告)日:2021-06-15
申请号:CN202110250389.5
申请日:2021-03-08
Applicant: 哈尔滨工业大学
Abstract: 基于稀疏图编码的高光谱遥感图像本征分解方法及系统,涉及图像处理领域。本发明解决了目前的本征分解方法应用于高光谱图像时无法有效地保持地物边界,进而导致针对高光谱图像反射率分量生成的精度低的问题。本发明包括:获得高光谱遥感图像;将高光谱遥感图像在光谱维上做几何平均去除掉由于物体表面几何分布引起的光谱变化得到图像将在空间维上做几何平均,消除由于随空间分布变化的光照引起的光谱变化得到图像根据获得高光谱遥感图像中每个像素的稀疏图编码字典;根据高光谱遥感图像的稀疏图编码字典获得稀疏图的相似度矩阵;根据和稀疏图相似度矩阵获得高光谱图像的反射率分量;所述系统包括:获取模块、构造模块、计算模块、分解模块。
-
公开(公告)号:CN106097252A
公开(公告)日:2016-11-09
申请号:CN201610464694.3
申请日:2016-06-23
Applicant: 哈尔滨工业大学
Abstract: 基于图Graph模型的高光谱图像超像素分割方法,本发明涉及高光谱图像超像素分割方法。本发明是要解决现有超像素图像分割研究大多是针对自然图像或单波段遥感图像存在较大的误差的问题,而提出的基于图Graph模型的高光谱图像超像素分割方法。该方法是通过一、得到降维后的高光谱图像以及高光谱图像的降维结果Y;二、根据高光谱图像的降维结果Y建立图模型,得到赋权图G′;三、设定超像素的初始位置,根据超像素的初始位置利用超像素生成算法生成k个超像素;四、统计每个顶点vi的24邻域中超像素标签的众数,将顶点vi的标签更新为该众数,得到超像素分割的结果等步骤实现的。本发明应用于高光谱图像超像素分割领域。
-
-
-
-
-
-
-