-
公开(公告)号:CN111460132B
公开(公告)日:2021-08-10
申请号:CN202010163281.8
申请日:2020-03-10
Applicant: 哈尔滨工业大学
Abstract: 一种基于图卷积神经网络的生成式会议摘要方法,本发明涉及基于图卷积神经网络的生成式会议摘要方法。本发明的目的是为了解决现有方法仅仅使用句子和词语的序列结构建模会议文本,忽略了会议丰富的对话篇章结构信息的问题。过程为:一:得到会议的对话篇章结构;二:构建会议篇章结构图,以及会议中句子之间的对话篇章结构;三:构建伪数据和对应的伪数据的会议篇章结构图;四:得到预训练好的图神经网络的生成式会议摘要模型和初始化参数;得到训练好的图神经网络的生成式会议摘要模型和模型参数;利用训练好的图神经网络的生成式会议摘要模型对待测试的会议进行测试,生成摘要。本发明用于自然语言处理领域下的生成式会议摘要方法。
-
公开(公告)号:CN111460132A
公开(公告)日:2020-07-28
申请号:CN202010163281.8
申请日:2020-03-10
Applicant: 哈尔滨工业大学
Abstract: 一种基于图卷积神经网络的生成式会议摘要方法,本发明涉及基于图卷积神经网络的生成式会议摘要方法。本发明的目的是为了解决现有方法仅仅使用句子和词语的序列结构建模会议文本,忽略了会议丰富的对话篇章结构信息的问题。过程为:一:得到会议的对话篇章结构;二:构建会议篇章结构图,以及会议中句子之间的对话篇章结构;三:构建伪数据和对应的伪数据的会议篇章结构图;四:得到预训练好的图神经网络的生成式会议摘要模型和初始化参数;得到训练好的图神经网络的生成式会议摘要模型和模型参数;利用训练好的图神经网络的生成式会议摘要模型对待测试的会议进行测试,生成摘要。本发明用于自然语言处理领域下的生成式会议摘要方法。
-
公开(公告)号:CN110738026A
公开(公告)日:2020-01-31
申请号:CN201911012473.2
申请日:2019-10-23
Applicant: 腾讯科技(深圳)有限公司 , 哈尔滨工业大学
IPC: G06F40/166 , G06F40/126 , G06F40/289 , G06N3/04
Abstract: 本文描述了一种用于生成描述文本的方法和设备。所述方法包括:将关键词序列以及具有预定风格的参考文本输入经训练的神经网络,其中所述神经网络包括关键词编码器、文本编码器、互注意力编码器以及解码器;利用关键词编码器对关键词序列进行编码以得到关键词序列的隐层状态序列;利用文本编码器对参考文本进行编码以得到参考文本的隐层状态序列;利用互注意力编码器对关键词序列的隐层状态序列和参考文本的隐层状态序列进行编码以得到融合了预定风格的关键词序列的隐层状态序列;利用解码器对融合了预定风格的关键词序列的隐层状态序列进行解码以输出具有所述预定风格的描述文本。
-
公开(公告)号:CN110309267A
公开(公告)日:2019-10-08
申请号:CN201910609351.5
申请日:2019-07-08
Applicant: 哈尔滨工业大学
Abstract: 本发明提供一种基于预训练模型的语义检索方法和系统。该方法包括:采用标注数据对预训练语义表示模型进行训练,获得满足设定优化目标的经训练的预训练语义表示模型;将句子库中的句子输入到所述经训练的预训练语义表示模型,获得该句子库中句子的向量表示;对所述句子库中的句子的向量表示建立语义索引,获得句子库的语义索引;将待查询语句输入到所述经训练的预训练语义表示模型,获得待查询语句的向量表示;将所述待查询语句的向量表示和所述句子库的语义索引进行匹配,获得查询结果。本发明的方法和系统能够提高语义检索的准确率和效率。
-
公开(公告)号:CN108681538A
公开(公告)日:2018-10-19
申请号:CN201810523282.1
申请日:2018-05-28
Applicant: 哈尔滨工业大学
CPC classification number: G06F17/277 , G06F17/271 , G06F17/2775 , G06N3/0445
Abstract: 一种基于深度学习的动词短语省略消解方法,它属于计算机人工智能技术领域。本发明解决了现有动词短语省略消解方法存在的触发词判断和先行短语识别准确率低的问题。本发明对确定好的数据集1和数据集2进行预处理;判断触发词的过程加入了对句子上下文特征和句子级特征的提取,将提取的句子特征转化为向量输入支持向量机,进而根据支持向量机的输出结果确定输入句子的触发词;最后利用多层感知机,从触发词生成的多个候选先行短语中识别出正确的先行短语。本发明提取句子特征时加入了上下文特征和句子级特征,可以使触发词判断的准确率达到90%左右,先行短语识别的准确率达到85%以上。本发明可以应用于计算机人工智能技术领域用。
-
公开(公告)号:CN107967257A
公开(公告)日:2018-04-27
申请号:CN201711160875.8
申请日:2017-11-20
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种级联式作文生成方法,是为了解决现有技术仅针对作文评分进行研究,未出现关于作文生成方法的研究,以及已有的主题分析技术很难对作文的题目进行分析的缺点而提出的。本发明用一个或多个话题词表示待生成作文的中心思想;得到话题词后,将作文生成分解为话题词扩充、句子抽取和篇章组织;话题词扩展后,利用句子抽取模块寻找与话题词相关的句子,并最终使用篇章组织模块对抽取获得的句子排序,使之成为连贯的整体。本发明还可以从已抽取的句子集合中挖掘词语对已有的话题词进行补充。本发明适用于自动作文生成。
-
公开(公告)号:CN107862037A
公开(公告)日:2018-03-30
申请号:CN201711071987.6
申请日:2017-11-03
Applicant: 哈尔滨工业大学
IPC: G06F17/30
CPC classification number: G06F17/30707 , G06F17/30731
Abstract: 一种基于实体连通图的事件模版构造方法,本发明涉及事件模板的构造方法。本发明的目的是为了解决现有技术在针对特定事件的“检索”、“问答”等人工智能应用中识别结果及提取特定信息不准确;基于事件的篇章相似度难以定量计算以及篇章关键信息难以提取的问题。过程为:一、对每一句抽取三元组;二、视三元组中的三个元素为三个结点;三、将从文本中抽取到的结点均放入到集合S1中;四、利用词向量计算S1中任两个结点的相似度并依此生成连通图;五、计算各结点的PageRank值;六、确定两篇文本陈述的事件间的关系度量值;七、形成多个文本簇;八、构建粗粒度事件模板和细粒度事件模版。本发明用于篇章关键信息提取及相关度计算领域。
-
公开(公告)号:CN107679225A
公开(公告)日:2018-02-09
申请号:CN201710986821.0
申请日:2017-10-20
Applicant: 哈尔滨工业大学
IPC: G06F17/30
Abstract: 一种基于关键词的回复生成方法,本发明涉及基于关键词的回复生成方法。本发明为了解决现有方法灵活性差、容易产生语意损失,以及序列对序列模型倾向于生成一般性万能回复的问题。本发明包括:一:根据输入的消息生成关键词;二:将输入的消息转化成上下文向量,将第一个关键词和上下文向量送入解码器,若得到的预测结果与第一个关键词一致,则将第二个关键词和上下文向量送入解码器;若得到的预测结果与第一个关键词不一致,则仍将第一个关键词和上下文向量送入解码器,直至得到的预测结果与第一个关键词一致后,再将第二个关键词和上下文向量送入解码器,直至所有关键词按顺序送入解码器,并得到预测结果。本发明用于聊天机器人回复生成领域。
-
公开(公告)号:CN101901213A
公开(公告)日:2010-12-01
申请号:CN201010239736.6
申请日:2010-07-29
Applicant: 哈尔滨工业大学
Abstract: 一种基于实例的动态泛化共指消解方法,涉及文本信息抽取领域。本发明所述动态泛化共指消解方法由训练实例库构建阶段和篇章内实体消解阶段组成,并经由实例构建、实例库构建、建立索引、动态泛化与实例检索以及共指链合成几部分完成共指消解。本发明不仅解决了共指统计模型中长尾效应,充分发挥低频训练样本的作用,使得本来就很珍贵的训练样本得以充分的发挥,并且使实例的动态泛化机制能够自适应的将测试实例的分类问题转变为训练实例库中最佳泛化点的选定与利用,最终找到最佳匹配的训练实例。
-
公开(公告)号:CN101201819A
公开(公告)日:2008-06-18
申请号:CN200710178308.5
申请日:2007-11-28
Applicant: 北京金山软件有限公司 , 北京金山数字娱乐科技有限公司 , 哈尔滨工业大学
IPC: G06F17/27
Abstract: 本发明公开一种树库的转化方法,包括:将PennChineseTreebank短语结构转化为依存结构;将PennChineseTreebank词性标注集转化为863词性标注集;利用HIT-IR-CDT的句法分析器对PennChineseTreebank中的扁平短语结构分析依存关系;利用预先建立的HIT-IR-CDT树库训练依存关系映射模型,对PennChineseTreebank进行依存关系转化,形成转化后的依存结构树。本发明还公开一种树库转化系统。本发明提供一种树库的转化方法及系统,使得转化后的树库能与原有的HIT-IR-CDT合并,增大树库规模,提高句法分析器的性能。
-
-
-
-
-
-
-
-
-