一种面向时序数据库的查询时间预测方法

    公开(公告)号:CN114218287B

    公开(公告)日:2022-11-04

    申请号:CN202111662253.1

    申请日:2021-12-30

    Abstract: 一种面向时序数据库的查询时间预测方法,涉及计算机技术领域,针对现有技术中查询时间预测速度慢的问题,包括:步骤一:读取时序数据;步骤二:将时序数据写入CnosDB,CnosDB使用CnoSQL查询语句对时序数据进行查询检索,并记录查询时间;步骤三:将查询语句编码为向量化数据;步骤四:对向量化数据提取数据分布特征;步骤五:使用PCA对数据分布特征进行降维;步骤六:利用向量化数据和降维后的数据分布特征作为输入,查询时间作为输出,训练梯度提升回归树模型;步骤七:利用训练好的梯度提升回归树模型进行查询时间预测。本申请在预测时间上,在上述实验中本模型都能在几十毫秒内给出预测结果,具有非常可观的响应速度。

    时序数据库自适应有损压缩方法、系统及介质

    公开(公告)号:CN114665884A

    公开(公告)日:2022-06-24

    申请号:CN202210318623.8

    申请日:2022-03-29

    Abstract: 时序数据库自适应有损压缩方法、系统及介质,涉及计算机技术领域,针对现有技术中缺少提高数据压缩比的方法的问题,本申请自适应用户的压缩精度需求。用户可以确定压缩精度,通过存储数据段的基和部分偏差来确保压缩在相应的精度内。数据库的数据压缩比高,节省存储空间。有损压缩降低精度,在保持基的同时将部分偏差丢弃,降低存储空间。使用类似Huffman编码的思想进行编码,进一步提升压缩比。编码方式灵活。可以更换编码方式,Huffman编码需要整段全解压缩才能够查询,查询效率低时可以选择更换不同的编码方式来提升效率。

    时态数据集上的实体识别方法

    公开(公告)号:CN109543712A

    公开(公告)日:2019-03-29

    申请号:CN201811200645.4

    申请日:2018-10-16

    Abstract: 本发明涉及计算机技术领域,提供一种时态数据集上的实体识别方法。该方法主要包括以下步骤:S1:基于规则对数据进行预处理;S2:框架聚类;S3:类融合。本发明首次针对无时间戳的时态数据集合上实体识别问题上提出了解决方法,定义了时态数据集上属性的不确定性,并相应地对记录之间的相似度计算采用了动态权重的计算方法,这种动态权重计算方法的效果是明显优于固定权重的。本发明有效地结合了否定匹配依赖规则和时序约束规则,减少了算法运行的时间并保证了算法输出的结果,对于实体识别中的聚类分析阶段,提出了新颖的时态聚类算法。

    变压器油色谱数据的迭代式清洗方法

    公开(公告)号:CN117076436B

    公开(公告)日:2025-05-16

    申请号:CN202310964710.5

    申请日:2023-08-02

    Abstract: 一种变压器油色谱数据的迭代式清洗方法,属于数据清洗技术领域。本发明针对变压器油色谱数据中的劣质数据不能被有效识别并清洗的问题。包括:将原始数据集中的数据分为违反规则数据集和符合规则数据集;采用符合规则数据集对分类器进行预训练;采用分类器计算违反规则数据的违反分数,并选择待修复数据;将待修复数据进行修复后,采用修复后数据对分类器进行再训练并对分类器的模型参数进行再更新,迭代以上的“挑选‑修复‑更新”流程,提升分类器的效果;最后采用训练后的分类器对实际运行数据中的违反规则运行数据进行预测,得到清洗后数据。本发明用于油色谱数据的清洗。

    一种基于否定约束的错误数据检测方法及系统

    公开(公告)号:CN117708111A

    公开(公告)日:2024-03-15

    申请号:CN202311742033.9

    申请日:2023-12-18

    Abstract: 一种基于否定约束的错误数据检测方法及系统,涉及计算机数据清洗技术领域,针对现有技术中利用否定约束进行错误数据检测存在效率低的问题,本申请利用矩阵的思维保存证据集,用0和1表示是否满足谓词,减少了使用字符串时的重复匹配操作与冗余路径的搜索,在不降低错误数据检测精度的情况下大幅提高了错误数据检测的速度,同时没有降低对错误数据的检测精度。

    一种基于时效平衡树的数据处理方法及系统

    公开(公告)号:CN116561122A

    公开(公告)日:2023-08-08

    申请号:CN202310454483.1

    申请日:2023-04-25

    Abstract: 一种基于时效平衡树的数据处理方法及系统,具体涉及一种基于时效平衡树的数据处理方法及系统,为了解决计算机的平衡树类结构上存在的短期内被查询频率最高的节点通常消耗代价过高、单次查询消耗通常固定为对数级别时间,使平衡树缺乏对查询频率和近期查询的时效性的敏感性,导致每次查询时间过长的问题。它构建时效平衡树,将数据按照时效平衡树的结构存储,空树、单节点、时效平衡树的左子树和右子树均是时效平衡树,时效平衡树上的每个节点包括检索键值对、时效权值和记录查询轮次,时效权值由衰减法计算。定义时效平衡树的失衡度、平衡状态和旋转方式。依据定义、时效平衡树和时效权值完成计算机数据的处理。属于计算机数据处理领域。

    一种时序数据库自适应数据压缩方法

    公开(公告)号:CN114665885B

    公开(公告)日:2022-11-04

    申请号:CN202210330862.5

    申请日:2022-03-29

    Abstract: 一种时序数据库自适应数据压缩方法,涉及数据压缩领域。本发明是为了解决目前时序数据压缩方法还存在无法对时序数据的特征和模式自适应压缩以及压缩率低造成内存空间浪费的问题。本发明包括:获取时序数据中的时间戳和Field Value;获取待压缩的时间戳每个时间点的delta‑of‑delta值;根据每个时间点的delta‑of‑delta值进行压缩获得每个时间点的压缩结果;以时间戳每个时间点为间隔将Field Value分为Field Value数据段,利用时间戳时间点的delta‑of‑delta值对Field Value数据段划分,获得Field Value数据小段;将Field Value数据小段输入训练好的神经网络分类器中,获得Field Value数据小段压缩结果;将时间戳压缩结果和Field Value压缩结果存储到内存中,获得时间序列数据压缩结果。本发明用于时序数据的压缩。

    一种时序数据库的数据压缩方法及系统

    公开(公告)号:CN114679184B

    公开(公告)日:2022-11-01

    申请号:CN202210373970.0

    申请日:2022-04-11

    Abstract: 一种时序数据库的数据压缩方法及系统,具体涉及一种时序数据库内的数据压缩方法及系统,本发明为解决时序数据库中压缩算法效率低的问题,利用时序数据库的压缩算法提取原始时序数据,原始时序数据包括整型数据和浮点数据;计算整型数据的delta数组;建立回归模型,设置权重因子为10,将delta数组输入回归模型内进行训练,得到训练好的回归模型;再将delta数组输入训练好的回归模型内,得到整型数据数值预测值;将整型数据数值预测值与真实值作差,得到误差结果;采用ZigZag变换对误差结果进行变换,并利用哈夫曼编码将变换后的误差结果进行保存;对浮点数据进行精度缩减,并采用异或运算进行压缩。属于计算机技术领域。

    面向云边端协同查询的深度学习代价估计系统、方法及设备

    公开(公告)号:CN114911823A

    公开(公告)日:2022-08-16

    申请号:CN202210319734.0

    申请日:2022-03-29

    Abstract: 面向云边端协同查询的深度学习代价估计系统、方法及设备,属于计算机技术领域。为了解决于目前还没有一种针对云、边、端三种设备联合查询优化的方法的问题。本发明所述系统中以云边端系统的系统节点元信息和协同查询计划树确定面向云边端协同查询的深度学习代价估计模型的模型输入,代价估计模型根据模型输入进行代价估计;代价估计模型采用残差连接的m个树卷积模块,对协同查询计划树编码进行特征融合和特征提取,进而得到针对每个云/边/端节点的查询计划特征;然后使用GCN和树卷积高效融合了查询特征和云边端数据库系统特征,实现了对云边端数据库的准确代价估计。本发明主要用于面向云边端协同查询的深度学习代价估计。

Patent Agency Ranking