一种基于深度强化学习的网联车辆协同控制方法

    公开(公告)号:CN118690786A

    公开(公告)日:2024-09-24

    申请号:CN202411165362.6

    申请日:2024-08-23

    Applicant: 吉林大学

    Abstract: 本发明属于道路车辆控制领域,涉及一种基于深度强化学习的网联车辆协同控制方法,该方法以专家数据集作为模仿学习的样本数据,通过行为克隆算法生成行为决策网络Φ,用于异策略强化学习中的行为策略;构建actor‑critic框架,每个智能体对应一个策略网络和一个价值网络,通过循环神经网络改进价值网络和策略网络,在价值网络中添加注意力机制;之后对价值网络和策略网络进行训练,采用确定性策略梯度原理更新策略网络,TD算法更新价值网络。训练完成后,策略网络即为控制网络,通过V2X通信部署到车端,车端通过感知获取所需信息,输入控制网络得到控制措施,完成网联车辆的协同控制,该方法可实现车流总体控制目标和网联车辆单智能体约束,更符合现实条件。

    一种基于图神经网络的绿道选线方法

    公开(公告)号:CN118427287B

    公开(公告)日:2024-08-27

    申请号:CN202410883187.8

    申请日:2024-07-03

    Applicant: 吉林大学

    Abstract: 本发明属于绿道选线技术领域,涉及一种基于图神经网络的绿道选线方法,包括以下步骤:步骤一:点的选择与提取;步骤二:基于点的选取,构建图神经网络所需节点矩阵;步骤三:构建两层GCN网络,实现对于绿道的精确求解;本发明的优点是:通过利用传统的阻力因子所具有的多种数据,结合行人对于自然景观、游憩的喜好等行人的主观因素,利用图神经网络模型实现对于绿道的选择,充分运用该模型在大规模数据集上进行训练后,能够学习到复杂的地理特征、地形和环境条件以及行人活动和景观密度,实现提供高精度的绿道选线预测。实现对于绿道的精确选择。

    一种异质交通流行车安全场建模方法

    公开(公告)号:CN116341288B

    公开(公告)日:2023-09-05

    申请号:CN202310593492.9

    申请日:2023-05-25

    Applicant: 吉林大学

    Abstract: 本发明属于交通控制系统领域,具体涉及一种异质交通流行车安全场建模方法,分别构建CAV车辆场模型、HDV车辆场模型、以横向距离为变量的环境场模型、以纵向距离为变量的环境场模型步骤,并绘制行车安全场场强示意图,本发明立足于异质交通流差异化建模思想,既考虑CAV车辆与HDV车辆的感知、作用力等差异,构建了车辆场模型并完善了CAV车辆场的作用范围约束;又考虑HDV驾驶员个性差异与驾驶环境对行车安全的影响,构建了驾驶员环境心理能见度综合指标,借助心理场的概念推导了混行驾驶中HDV驾驶员的心理作用力,确立了HDV传统车的车辆场模型。

Patent Agency Ranking