-
公开(公告)号:CN114092521A
公开(公告)日:2022-02-25
申请号:CN202111425943.5
申请日:2021-11-26
Applicant: 厦门理工学院
IPC: G06T7/246 , G06K9/62 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/774 , G06V10/80
Abstract: 本发明涉及一种基于多阶段自适应网络的鲁棒目标跟踪方法及系统,该方法包括以下步骤:S1、构建离线训练数据集;S2、使用元学习的多步梯度下降训练方法对离线训练数据集进行训练,得到元学习模型;S3、构建多阶段自适应网络,包括领域自适应子网、特征自适应子网和位置自适应子网三个不同自适应子网络,S4、将测试视频中仅已知目标位置的第一帧输入到领域自适应子网,对构建的多阶段自适应网络进行初始化训练;S5、将测试视频中第二帧开始的后续帧依次输入到特征自适应子网中,利用多阶段自适应网络对测试视频进行跟踪。该方法及系统有利于获得更加稳定、鲁棒、准确的跟踪结果。
-
公开(公告)号:CN111967389B
公开(公告)日:2022-02-18
申请号:CN202010829155.1
申请日:2020-08-18
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于深度双路径学习网络的人脸属性识别方法及系统,该方法包括:1)将人脸属性数据集包含的人脸属性分成局部属性组和全局属性组;2)构建双路径学习网络模型,包括不同层数的局部属性子网络和全局属性子网络,用以对局部属性组和全局属性组的学习;3)将数据集中人脸图片输入双路径学习网络模型,获取不同尺度人脸图片,分别以大、小尺度人脸图片作为局部属性、全局属性子网络的输入;4)设计考虑挖掘难分样本和平衡正负样本的自适应损失函数,并使用损失函数训练模型,得到训练好的双路径学习网络模型;5)用训练好的双路径学习网络模型对待识别的人脸图片进行人脸属性识别。该方法及系统有利于提高人脸属性识别的准确性。
-
公开(公告)号:CN112464781A
公开(公告)日:2021-03-09
申请号:CN202011328157.9
申请日:2020-11-24
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于图神经网络的文档图像关键信息提取及匹配方法,包括以下步骤:步骤1:构建用于获取关键文本所在区域边框位置的关键文本信息检测模型;步骤2:构建用于识别文字边框内的文字关键文本识别模型;步骤3:将待提取信息的文档图像依次通过关键文本信息检测模型和关键文本识别模型,获取全部子图的文字识别结果;步骤4:以关键文本边框为节点构建图,以图神经网络为基础网络分别对于每个文本框的节点进行聚合,并预测节点的关键文本节点类型;步骤5:以正则表达式以及领域规则库的方式修正关键文本的识别结果,并得到最终的提取及匹配结果。本发明实现高效提取文档图像中的关键元素,并且准确地为关键元素匹配相应键值。
-
公开(公告)号:CN111967389A
公开(公告)日:2020-11-20
申请号:CN202010829155.1
申请日:2020-08-18
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于深度双路径学习网络的人脸属性识别方法及系统,该方法包括:1)将人脸属性数据集包含的人脸属性分成局部属性组和全局属性组;2)构建双路径学习网络模型,包括不同层数的局部属性子网络和全局属性子网络,用以对局部属性组和全局属性组的学习;3)将数据集中人脸图片输入双路径学习网络模型,获取不同尺度人脸图片,分别以大、小尺度人脸图片作为局部属性、全局属性子网络的输入;4)设计考虑挖掘难分样本和平衡正负样本的自适应损失函数,并使用损失函数训练模型,得到训练好的双路径学习网络模型;5)用训练好的双路径学习网络模型对待识别的人脸图片进行人脸属性识别。该方法及系统有利于提高人脸属性识别的准确性。
-
公开(公告)号:CN107766407A
公开(公告)日:2018-03-06
申请号:CN201710755814.X
申请日:2017-08-29
Applicant: 厦门理工学院
CPC classification number: G06F16/29 , G06K9/6215
Abstract: 一种采用两阶段搜索的轨迹相似性连接查询方法,用于对给定的两个轨迹集合P、Q和相似度阈值,寻找两个轨迹集合P、Q之间,时空相似度大于该相似度阈值的轨迹对,包括如下步骤:1)针对集合P中的每一条轨迹,在集合Q中搜索与之在时间维度和空间维度相似的轨迹并保存为该条轨迹的候选集合;2)将集合P中所有轨迹的候选集合进行合并,得到符合要求的所有轨迹对。本发明方法可应用到公路网络相关场景中,使用时间空间两个维度上的连续性匹配方法来计算轨迹之间的相似度,更好地衡量两条轨迹之间的匹配程度,输出令用户满意的结果。
-
公开(公告)号:CN119252347B
公开(公告)日:2025-03-14
申请号:CN202411776207.8
申请日:2024-12-05
Applicant: 厦门理工学院
Abstract: 本发明提供了一种基于KAN网络和多组学数据的癌症亚型分类方法,该方法包括获取多组学数据,包括基因组学数据、转录组学和蛋白质组学数据,构建测试数据集;利用科尔莫戈洛夫‑阿诺德网络模型对多组学数据进行特征提取和整合,并进行训练,得到训练好的癌症分型模型;在模型评估阶段,采用蒙特卡洛丢弃法进行多次前向传播,以估算模型预测结果的不确定性,提升模型的鲁棒性;癌症分型预测,使用训练好的科尔莫戈洛夫‑阿诺德网络模型对多组学数据进行高精度癌症分型。本方法能够有效解决多组学数据异质性问题,提升癌症分型的准确性和鲁棒性,有助于提高个性化治疗的效果。
-
公开(公告)号:CN118898722B
公开(公告)日:2025-02-11
申请号:CN202411404225.3
申请日:2024-10-10
Applicant: 厦门理工学院
IPC: G06V10/422 , G06V10/80 , G06V10/774 , G06V10/82 , G06V10/10 , G06N3/0455 , G06N3/0442 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于几何基元空间感知的平面几何自动解题方法,S1将待求解的几何图示和几何题目利用解析器按预设的规则,解析成文本子句,并输入Transformer Encoder中编码;S2将几何图示图像通过卷机神经网络分成64个图示补丁特征并通过自注意力机制学习视觉模态内部特征;S3将这些模态特征输入到多模态双支路空间感知预训练语言模块中以学习跨模态全局特征和几何基元空间信息,并输入到双向GRU编码器中以执行融合编码;S4将混合编码中的文本编码送入点基元空间注意力模块中增强模型对几何基元的空间感知能力;S5将增强的混合编码由自限GRU解码器解码,并生成顺序求解程序。
-
公开(公告)号:CN118918589B
公开(公告)日:2025-01-21
申请号:CN202411399134.5
申请日:2024-10-09
Applicant: 厦门理工学院
IPC: G06V30/146 , G06V30/19 , G06V30/18 , G06V10/82 , G06N3/0464
Abstract: 本发明涉及一种基于网格点的医疗文档图像矫正识别方法及系统,该方法包括以下步骤:步骤A:获取医疗文档的待矫正图像及其对应的真实图像,构建测试数据集;步骤B:构建基于网格点的医疗文档图像矫正模型并通过训练数据集对其进行训练,得到训练好的医疗文档图像矫正模型;步骤C:利用测试数据集对训练好的医疗文档图像矫正模型进行测试,评估合格的即为最终得到的医疗文档图像矫正模型;步骤D:将最终得到的医疗文档图像矫正模型应用于医疗文档图像矫正,获取矫正后的医疗文档图像;然后对矫正后的医疗文档图像进行文字识别,得到识别后的医疗文本。该方法及系统有利于快速、准确地校正医疗文档图像并对其进行文字识别。
-
公开(公告)号:CN119229220A
公开(公告)日:2024-12-31
申请号:CN202411746649.8
申请日:2024-12-02
Applicant: 厦门理工学院
IPC: G06V10/764 , G06V10/82 , G06V10/774 , G06N3/096
Abstract: 本发明提供了基于跨域截断式迁移学习的放大内镜图像病变分类方法,包括获取放大内镜的真实图像、病变类别,构建训练、验证和测试数据集;构建基于跨域截断式迁移学习的放大内镜图像病变分类模型,设置截断点后进行训练,得到训练后的放大内镜图像病变分类模型;利用验证数据集对模型进行评估,根据验证结果调整模型参数,确定最终的模型;利用测试数据集进行测试,将经过测试的放大内镜图像病变分类模型应用于实际的放大内镜图像病变分类任务中。该方法适用于关于放大内镜图片病变类别工作,在模型训练过程中利用分层截断策略以及动态学习率调整机制,提升了模型的分类精度和训练效率,具有较强的实用性和推广价值。
-
公开(公告)号:CN118968598A
公开(公告)日:2024-11-15
申请号:CN202411154082.5
申请日:2024-08-21
Applicant: 厦门理工学院
Abstract: 本发明涉及一种基于提示学习的人脸属性识别方法及系统,该方法包括以下步骤:1)从数据集中获取人脸图像和人脸属性识别标签,并对人脸图像进行预处理,形成人脸图像Token序列;2)将人脸图像Token序列输入构建的人脸属性识别网络模型,人脸属性识别网络模型对提示序列进行初始化,并将其与人脸图像Token序列拼接后输入Transformer模型;Transformer模型部分冻结,只有提示序列进行迭代,以引导模型进行微调;Transformer模型的不同编码器层之间插入动态可调门控模块,以自适应地调整不同编码器层的提示序列的贡献;对人脸属性识别网络模型进行训练;3)将训练好的人脸属性识别网络模型用于人脸属性识别。该方法及系统有利于更加鲁棒、准确、轻量化的获得人脸属性识别结果。
-
-
-
-
-
-
-
-
-