-
公开(公告)号:CN115185730A
公开(公告)日:2022-10-14
申请号:CN202210849413.1
申请日:2022-07-19
Applicant: 南通大学
Abstract: 本发明提供了一种基于CodeBert和空间结构的代码缺陷预测方法,属于计算机技术领域。解决了缺陷预测模型中代码特征提取部分缺乏代码空间结构,使得模型获得更多的代码特征信息的问题。其技术方案为:包括以下步骤:S1:从issues中收集数据集并进行预处理操作;S2:进行关键特征提取和降维;S3:通过最短路径长度表示代码空间结构信息;S4:构建bi‑LSTM/LSTM神经网络模型;S5:构建Aast输入神经网络模型;S6:得到预测结果。本发明的有益效果为:本发明从源代码中提取更加丰富的代码语义及结构特征,从而提高缺陷预测的质量和可靠性。