-
公开(公告)号:CN116206752A
公开(公告)日:2023-06-02
申请号:CN202310169343.X
申请日:2023-02-22
Applicant: 南通大学
IPC: G16H50/20 , G06F18/2415 , G06F18/25 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/0495
Abstract: 本发明提供了基于结构‑功能脑网络的精神疾病识别方法,属于医学信息智能诊断技术领域,解决了利用人工智能帮助医生从海量数据中识别精神疾病的技术问题。其技术方案为:对结构和功能两类脑网络的连接矩阵分别进行行列卷积,获得深度特征;在特征学习过程中,增加深度融合模块,使两个模态可以交互式特征学习;在最终的识别阶段,通过多模态双线性池化层,进一步融合两类脑网络的特征,学习最后的联合特征;然后输入到最终的分类层获得疾病识别结果,并将预测标签和真实标签的交叉熵损失作为损失函数进行训练。本发明的有益效果为:显著提高对精神疾病识别的准确率,辅助医生进行诊断分析,给患者带来更好的医疗服务。