-
公开(公告)号:CN111354427B
公开(公告)日:2022-04-29
申请号:CN202010117158.2
申请日:2020-02-25
Applicant: 南通大学
Abstract: 本发明公开一种用于大规模电子健康档案知识协同约简的最近邻多粒度利润方法,首先在Spark云平台上将大规模电子健康档案数据集分割至不同的多粒度进化子种群中;接着构建一种基于最近邻多粒度利润模型,在最近邻半径中构造协同化的最近邻向量;然后求出超级精英的共享最近邻利润权重及其权重利润向量,执行超级精英权重利润矩阵的自适应动态调整策略;最后求出大规模电子健康档案数据知识协同约简集及其核属性,并将电子健康档案知识约简集存储至Spark云平台。本发明能高效取得大规模电子健康档案中不完备和模糊数据知识约简集,对电子健康档案决策支持分析具有重要意义与价值。
-
公开(公告)号:CN111354427A
公开(公告)日:2020-06-30
申请号:CN202010117158.2
申请日:2020-02-25
Applicant: 南通大学
Abstract: 本发明公开一种用于大规模电子健康档案知识协同约简的最近邻多粒度利润方法,首先在Spark云平台上将大规模电子健康档案数据集分割至不同的多粒度进化子种群中;接着构建一种基于最近邻多粒度利润模型,在最近邻半径中构造协同化的最近邻向量;然后求出超级精英的共享最近邻利润权重及其权重利润向量,执行超级精英权重利润矩阵的自适应动态调整策略;最后求出大规模电子健康档案数据知识协同约简集及其核属性,并将电子健康档案知识约简集存储至Spark云平台。本发明能高效取得大规模电子健康档案中不完备和模糊数据知识约简集,对电子健康档案决策支持分析具有重要意义与价值。
-
公开(公告)号:CN110867224A
公开(公告)日:2020-03-06
申请号:CN201911030948.0
申请日:2019-10-28
Applicant: 南通大学
IPC: G16H10/60 , G06F40/205 , G06F40/279 , G06N3/00
Abstract: 本发明公开一种用于大规模脑病历分割的多粒度Spark超信任模糊方法,首先在Spark云平台上将大规模脑病历数据属性集分割至不同的多粒度进化子种群Granu-populationi中;设计一种基于多粒度Spark超信任模型,构建多粒度种群内不同超级精英之间信任度;调整多粒度中心阈值,对超级精英使用多粒度子种群均衡调整策略进行动态更新,对大规模脑病历进行全局搜索分割与局部精化分割,超级精英在各自区域内能协同提取知识约简子集;最后求得大规模脑病历最优分割特征集并存储至Spark云平台中。本发明能稳定分割大规模脑病历知识约简集,为脑部疾病智能诊断和辅助治疗提供重要的诊断依据。
-
-