-
公开(公告)号:CN119006932B
公开(公告)日:2025-03-18
申请号:CN202411463290.3
申请日:2024-10-21
Applicant: 南昌大学
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06N3/0455 , G06N3/084
Abstract: 本发明提供了一种基于双阶段学习的深度伪造图像检测方法,涉及图像处理技术领域,该方法包括以下步骤:S1、获取第一真假图像对的第一全局特征,基于所述第一全局特征获取第一通用伪造特征信息,基于所述第一通用伪造特征信息检测图像并更新所述初始检测模型的参数;S2、获取第二真假图像对的第二全局特征,基于所述第二全局特征获取第二通用伪造特征信息、特定伪造方法、性别以及种族,计算特征分类损失,基于所述特征分类损失更新检测模型的参数。本发明提供的基于双阶段学习的深度伪造图像检测方法,能够有效的检测深度伪造图像,并提高对于未知深度伪造图像技术的检测成功率。