一种基于表面肌电信号的手指手势分类方法

    公开(公告)号:CN110826625B

    公开(公告)日:2022-04-12

    申请号:CN201911076572.7

    申请日:2019-11-06

    Applicant: 南昌大学

    Abstract: 本发明提供了一种基于表面肌电信号的手指手势分类方法,包括以下步骤:步骤1,采集人体手指动作的表面肌电信号;步骤2:处理表面肌电信号:(a)提取活动段肌电信号,(b)对活动段信号进行去噪处理,(c)提取特征值,(d)对特征值进行降维;步骤3:手指动作的模式识别:(a)选取SVM混合核函数,(b)基于VGLBSO算法的混合核SVM参数优化,(c)构造SVM多分类器。本发明充分考虑日常生活中所用手势动作的复杂性和多态性,涵盖了手指的微小手势动作,并将矢量分组学习BSO(Vector Grouping Learning,VGLBSO)算法应用到SVM模型的重要参数寻优中,选出权重系数δ、目标函数中正则化参数c和RBF核函数中参数σ的最优值,达到了提高SVM模型预测分类准确率的目的。

Patent Agency Ranking