基于一维深度卷积神经网络的功率分配策略

    公开(公告)号:CN113518457A

    公开(公告)日:2021-10-19

    申请号:CN202110437441.8

    申请日:2021-04-22

    Abstract: 本发明公开了基于一维深度卷积神经网络的功率分配策略,属于通信系统领域,针对现有基于深度神经网络的功率分配算法的不足,提供一种基于一维深度卷积神经网络的功率控制策略,既能实现在线决策,又能对传统算法达到一个很好的性能逼近,其网络预测能力要优于目前的基于全连接结构的深度神经网络。本发明研究了用一维卷积神经网络替代传统算法的资源分配策略,通过监督学习的方式,学习基于传统算法得到的功率分配效果,实现快速可靠的在线决策,与传统的基于深度学习的功率分配算法相比,克服了学习能力有限的缺点,其预测能力更高。

Patent Agency Ranking