-
公开(公告)号:CN119206507A
公开(公告)日:2024-12-27
申请号:CN202411668533.7
申请日:2024-11-21
Applicant: 南京信息工程大学
IPC: G06V20/10 , G06V10/82 , G06V10/764 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了高光谱遥感图像处理技术领域的一种高光谱图像异常检测方法、装置、电子终端及存储介质,所述高光谱图像异常检测方法包括:通过编码模块得到特征图;使用自注意力机制模块抑制特征图的异常信息表达;通过Transformer编码模块提取全局特征;将分别蕴含不同信息的特征图进行特征融合;使用解码模块进行图像重构,利用重构误差得到异常检测图。本发明进行了空间多尺度特征提取,并通过自注意力机制进行异常抑制,抑制异常像素点对网络重建能力的贡献,防止网络学习到异常点的特征并对异常点产生较好的重构效果。
-
公开(公告)号:CN119181026A
公开(公告)日:2024-12-24
申请号:CN202411700034.1
申请日:2024-11-26
Applicant: 南京信息工程大学
IPC: G06V20/10 , G06V10/26 , G06V10/44 , G06V10/54 , G06V10/74 , G06V10/80 , G06V10/82 , G06N3/044 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了高光谱图像技术领域的一种高光谱图像变化检测方法、装置及存储介质,方法包括:对高光谱图像进行特征提取,得到空间特征图和光谱特征图,聚合空间特征图和光谱特征图获得融合特征图;对双时相高光谱图像进行分割,生成超像素标签图,将超像素标签图投影到所述融合特征图中,形成超像素特征图,根据所述超像素特征图构建拓扑图;将拓扑图中的节点特征向量和邻接矩阵输入KAN‑GAT网络,获得节点嵌入向量;对节点嵌入向量进行相似性度量找出变化节点,通过超像素标签图检测出超像素特征图变化的超像素区域,生成像素级别的变化区域显示。本发明能够解决传统的差异度量方法导致误检率和漏检率增加的技术问题。
-
公开(公告)号:CN119226777B
公开(公告)日:2025-03-04
申请号:CN202411719238.X
申请日:2024-11-28
Applicant: 南京信息工程大学
IPC: G06F18/213 , G01N15/075 , G01N21/84 , G06N3/0464 , G06N3/045
Abstract: 本发明公开了一种高分辨大气气溶胶反演方法、装置及系统,涉及遥感信息技术领域,对研究区域的各波段卫星影像统一重采样为60m,并通过SCL场景分类图进行掩膜操作;然后提取出各波段的大气底层反射率数据以及对应的几何角度信息,通过对站点数据进行插值并与卫星数据进行时空匹配从而构建数据集;最后,构建深度学习模型,对数据进行归一化处理并输入到模型之中进行气溶胶反演,得到高分辨率的气溶胶光学厚度(Aerial Optical Depth,AOD)分布图。本发明具有较好的反演效果和较高的空间分辨率,并且无需大量参数和预构建查找表。
-
公开(公告)号:CN119206379A
公开(公告)日:2024-12-27
申请号:CN202411700036.0
申请日:2024-11-26
Applicant: 南京信息工程大学
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06V20/10 , G06N3/0464 , G06N3/049 , G06N3/08
Abstract: 本发明公开了高光谱图像处理领域的一种高光谱图像分类方法,旨在解决高光谱图像中存在复杂的空间关系和纹理信息,常规的分类算法难以充分利用这些信息技术问题。其包括:脉冲神经网络能够自适应地提取更有效的特征,提高对高光谱数据的敏感性,动态阈值调整层避免人工设定固定阈值,更好地适应高光谱数据的复杂性;脉冲神经网络通过模拟生物神经系统的动态处理特性,能有效处理时空数据,特征提取层突出二值化的脉冲信号中的关键特征,从而增强关键特征的分类性能;根据每个像素的具体信息自动二值化编码为脉冲序列,具备更好的信息保真度;进而实现从高光谱图像中充分提取关键特征,实现高光谱图像的分类。
-
公开(公告)号:CN119169399A
公开(公告)日:2024-12-20
申请号:CN202411688591.6
申请日:2024-11-25
Applicant: 南京信息工程大学
IPC: G06V10/764 , G06V20/10 , G06V10/40 , G06V10/74 , G06V10/82
Abstract: 本发明公开了高光谱图像处理领域的一种高光谱图像分类方法,旨在解决难以利用高光谱图像中复杂信息导致识别准确性低技术问题。其包括:首先通过初步特征提取处理剔除无用信息;利用KAN卷积运算处理时元素之间相互学习激活的特性捕捉空间和光谱特征,并利用自适应注意力机制放大空间和光谱特征,减少无用信息对计算资源的占用;自适应注意力机制采用基于汉明距离计算查询和键之间的相似性,可以降低无用信息的不良影响;利用重聚焦卷积自适应调整特征图中每个局部区域的响应强度,通过响应强度控制特征表达,实现对图像深度细节信息的挖掘,充分利用高光谱图像中存在复杂的空间关系和纹理信息,提高分类效率和准确性。
-
-
-
-