-
公开(公告)号:CN112668790B
公开(公告)日:2023-07-25
申请号:CN202011617345.3
申请日:2020-12-30
Applicant: 南京信息工程大学
IPC: G06Q10/04 , G06Q50/26 , G06F18/2321 , G06N3/0442 , G06N3/08
Abstract: 本发明公开了基于时空序列聚类算法和LSTM神经网络雷电预测方法,属于计算机科学技术领域,本发明的基于时空序列聚类算法和LSTM神经网络雷电预测方法,根据雷电中心经纬度的变化,利用基于雷电预测改进的DBSCAN密度聚类算法得到Eps值和每个时间片的雷电中心,通过LSTM神经网络预测出下一个时间片的雷电中心的地理位置。本发明可以自动计算出密度聚类DBSCAN的聚类半径,LSTM神经网络对雷电中心经纬度预测预测误差小精度高,基本可以满足实际的雷电预测需求。本发明首次尝试用LSTM神经网络解决雷电预测问题,之前的方法一般使用多项式拟合或者其他拟合方法,对雷电中心移动这个复杂的过程模拟的不够完全。
-
公开(公告)号:CN115841685A
公开(公告)日:2023-03-24
申请号:CN202310116481.1
申请日:2023-02-15
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于复合像元梯度的伪造指纹检测系统及方法,包括对指纹图像集进行预处理和提取指纹图像的感兴趣区域,构建复合像元梯度和复合像元梯度特征矩阵,将多个复合像元梯度特征矩阵进行降维,输入到支持向量机,经训练后得到指纹图像的真假判别模型,用于对测试指纹图像进行检测,提高真假指纹判断的准确度。
-