一种双流RGB-D Faster R-CNN识别哺乳母猪姿态的方法

    公开(公告)号:CN109766856A

    公开(公告)日:2019-05-17

    申请号:CN201910040870.4

    申请日:2019-01-16

    Abstract: 本发明公开了一种双流RGB-D FasterR-CNN的识别哺乳母猪姿态方法,即提出一种在特征提取阶段融合RGB-D图像特征的端对端的双流RGB-D Faster R-CNN算法,用于识别自由栏母猪场景下的哺乳母猪站立、坐立、俯卧、腹卧和侧卧5类姿态。基于Faster R-CNN,首先使用两个CNN网络分别提取RGB图像特征和深度图像特征;然后利用RGB-D图像的映射关系,仅采用一个RPN网络生成RGB图像特征图和深度图像特征图的感兴趣区域;对感兴趣区域特征池化后,使用一个独立的网络层实现RGB-D特征的拼接融合;最后在Fast R-CNN阶段,引入NOC结构继续卷积提取融合后的特征,再送入分类器和回归器。本发明提供了一种融合了RGB-D数据信息端对端的高精度、小模型和实时的母猪姿态识别方法,为进一步分析母猪行为奠定了基础。

    一种芒果采摘点识别方法
    12.
    发明授权

    公开(公告)号:CN109711325B

    公开(公告)日:2023-05-23

    申请号:CN201811587011.9

    申请日:2018-12-25

    Abstract: 本发明公开了一种芒果采摘点识别方法,包括以下步骤:采集芒果的图像,建立自然场景下的芒果采摘图像库;建立基于Mask R‑CNN网络的芒果果实分割模型;计算每个果实的长轴、短轴以及质心;利用自底向上层次聚类法判断是否成簇;若芒果果实成簇,则识别成簇果实母枝并在母枝上定位采摘点;若芒果为单果,则分割和识别该果实的果梗,在果梗上确定采摘点。本发明利用基于Mask R‑CNN网络的芒果果实分割模型进行果实实例分割,解决自然果园场景下光线变化、遮挡、重叠导致的检测分割难题,具有分割精准、适用场景多的优点。

    一种基于深度视频的哺乳母猪姿态转换识别方法

    公开(公告)号:CN110309786B

    公开(公告)日:2023-04-07

    申请号:CN201910596270.6

    申请日:2019-07-03

    Abstract: 本发明公开了一种用于深度视频的哺乳母猪姿态转换识别方法,步骤为:深度视频质量增强;用改进的3D Mask R‑CNN算法检测、跟踪母猪并识别母猪姿态,选取每帧中概率最大的姿态类别,形成姿态序列;根据姿态序列的变化频率进行疑似转换片段粗定位,并利用前后帧各类姿态的概率方差细定位疑似转换片段的起始帧和结束帧;设计三阶段上下文深度运动特征图,以提取疑似转换片段的运动特征;将提取到的特征输入CNN模型进行转换/非转换片段识别,输出识别结果。本发明能在光线变化及夜间场景下,自动识别定位长段视频中的母猪姿态转换,为母猪的高危行为识别打下基础。

    一种基于深度视频的哺乳母猪姿态转换识别方法

    公开(公告)号:CN110309786A

    公开(公告)日:2019-10-08

    申请号:CN201910596270.6

    申请日:2019-07-03

    Abstract: 本发明公开了一种用于深度视频的哺乳母猪姿态转换识别方法,步骤为:深度视频质量增强;用改进的3D Mask R-CNN算法检测、跟踪母猪并识别母猪姿态,选取每帧中概率最大的姿态类别,形成姿态序列;根据姿态序列的变化频率进行疑似转换片段粗定位,并利用前后帧各类姿态的概率方差细定位疑似转换片段的起始帧和结束帧;设计三阶段上下文深度运动特征图,以提取疑似转换片段的运动特征;将提取到的特征输入CNN模型进行转换/非转换片段识别,输出识别结果。本发明能在光线变化及夜间场景下,自动识别定位长段视频中的母猪姿态转换,为母猪的高危行为识别打下基础。

Patent Agency Ranking