一种芒果采摘点识别方法
    11.
    发明授权

    公开(公告)号:CN109711325B

    公开(公告)日:2023-05-23

    申请号:CN201811587011.9

    申请日:2018-12-25

    Abstract: 本发明公开了一种芒果采摘点识别方法,包括以下步骤:采集芒果的图像,建立自然场景下的芒果采摘图像库;建立基于Mask R‑CNN网络的芒果果实分割模型;计算每个果实的长轴、短轴以及质心;利用自底向上层次聚类法判断是否成簇;若芒果果实成簇,则识别成簇果实母枝并在母枝上定位采摘点;若芒果为单果,则分割和识别该果实的果梗,在果梗上确定采摘点。本发明利用基于Mask R‑CNN网络的芒果果实分割模型进行果实实例分割,解决自然果园场景下光线变化、遮挡、重叠导致的检测分割难题,具有分割精准、适用场景多的优点。

    一种基于深度视频的哺乳母猪姿态转换识别方法

    公开(公告)号:CN110309786B

    公开(公告)日:2023-04-07

    申请号:CN201910596270.6

    申请日:2019-07-03

    Abstract: 本发明公开了一种用于深度视频的哺乳母猪姿态转换识别方法,步骤为:深度视频质量增强;用改进的3D Mask R‑CNN算法检测、跟踪母猪并识别母猪姿态,选取每帧中概率最大的姿态类别,形成姿态序列;根据姿态序列的变化频率进行疑似转换片段粗定位,并利用前后帧各类姿态的概率方差细定位疑似转换片段的起始帧和结束帧;设计三阶段上下文深度运动特征图,以提取疑似转换片段的运动特征;将提取到的特征输入CNN模型进行转换/非转换片段识别,输出识别结果。本发明能在光线变化及夜间场景下,自动识别定位长段视频中的母猪姿态转换,为母猪的高危行为识别打下基础。

    一种基于深度视频的哺乳母猪姿态转换识别方法

    公开(公告)号:CN110309786A

    公开(公告)日:2019-10-08

    申请号:CN201910596270.6

    申请日:2019-07-03

    Abstract: 本发明公开了一种用于深度视频的哺乳母猪姿态转换识别方法,步骤为:深度视频质量增强;用改进的3D Mask R-CNN算法检测、跟踪母猪并识别母猪姿态,选取每帧中概率最大的姿态类别,形成姿态序列;根据姿态序列的变化频率进行疑似转换片段粗定位,并利用前后帧各类姿态的概率方差细定位疑似转换片段的起始帧和结束帧;设计三阶段上下文深度运动特征图,以提取疑似转换片段的运动特征;将提取到的特征输入CNN模型进行转换/非转换片段识别,输出识别结果。本发明能在光线变化及夜间场景下,自动识别定位长段视频中的母猪姿态转换,为母猪的高危行为识别打下基础。

    一种基于改进Faster-R-CNN的哺乳母猪姿态识别方法

    公开(公告)号:CN108830144B

    公开(公告)日:2022-02-22

    申请号:CN201810416468.7

    申请日:2018-05-03

    Abstract: 本发明涉及一种基于改进Faster‑R‑CNN的哺乳母猪姿态识别方法,包括以下步骤:S1、采集哺乳母猪的RGB‑D视频图像,并建立母猪姿态识别深度视频图像库;S2、对基础ZF网络增加深度、并引入残差结构,设计成具有高精度、实时性和鲁棒性的CNN网络结构;S3、使用设计的CNN网络结构,构建Faster‑R‑CNN模型结构,并对Faster‑R‑CNN模型结构引入Center Loss监督信号,与SoftmaxLoss联合构成分类损失函数,最终建立改进的Faster‑R‑CNN母猪姿态识别模型;S4、使用训练集训练Faster‑R‑CNN母猪姿态识别模型,使用测试集测试模型性能,最终筛选最佳性能模型,用于哺乳母猪姿态识别。

Patent Agency Ranking