-
公开(公告)号:CN111753885A
公开(公告)日:2020-10-09
申请号:CN202010518162.X
申请日:2020-06-09
Applicant: 华侨大学
Abstract: 一种基于深度学习的隐私增强数据处理方法和系统,用于对车辆节点上传的感知数据进行数据分析和预处理,其特征在于,包括如下步骤:1)使用基于均值哈希的图像指纹计算法,剔除感知数据中的相似数据;2)对带标签的数据集和无标签数据集进行数据增强,采用增强后的数据训练并测试基于半监督学习的分类模型;3)将步骤1)得到的数据输入训练好的半监督学习的分类模型,剔除不相关数据。本发明基于半监督学习和图像指纹的数据收集和预处理方案显著降低了上传到云端的数据量,同时有效保护了用户的数据隐私。
-
公开(公告)号:CN110851660A
公开(公告)日:2020-02-28
申请号:CN201911011212.9
申请日:2019-10-23
Applicant: 华侨大学
IPC: G06F16/901 , G06Q50/00
Abstract: 本发明涉及一种社交网络中基于谣言传播模型的免疫回溯辟谣方法,包括:建立包括S、C、D、I和R五种状态的节点传播模型,各状态在一定的转化因素下进行状态转化;状态转化过程中引入激励机制,抑制谣言传播;所述转化因素包括个人因素、邻居因素、内容因素和时延因素;其中,S表示未接触信息,C表示传播这个信息,D表示怀疑这个信息,I表示对该信息不感兴趣不会传播,R表示传播权威机构发布的辟谣。本发明在状态转换概率计算中考虑了每个用户的个人因素、邻居因素、内容因素和时延因素,模型更接近实际;引入激励机制使用户能够发送正确的辟谣信息,使得谣言更早的被发现和抑制。
-