一种推荐模型训练方法及装置

    公开(公告)号:CN110008397A

    公开(公告)日:2019-07-12

    申请号:CN201910009471.1

    申请日:2019-01-04

    Abstract: 本申请提供了一种推荐模型的训练方法,该方法包括:使用单类域感知低秩模型对所述训练样本集进行训练,以获得模型参数矩阵,用于生成推荐模型。本申请的方案可以应用于人工智能的推荐领域,本申请中所的单类域感知低秩模型可以引入多种域特征以及正负样本,由此能够在训练的过程中考虑更多的用户选择相关的因素和用户相关的负例信息,由此生成性能更优秀的推荐模型,推荐结果更符合用户需求。此外,本申请对于模型训练的具体训练方式能够大大简化模型训练的复杂度,从而提升了模型训练的效率,也使得更多信息的引入成为可能。

    推荐方法及装置
    12.
    发明公开

    公开(公告)号:CN109902706A

    公开(公告)日:2019-06-18

    申请号:CN201811337589.9

    申请日:2018-11-09

    Abstract: 本发明公开了人工智能领域的一种智能推荐方法,包括:根据多个过往历史推荐对象和用户针对每个历史推荐对象的行为,如点击次数,下载次数等,获取推荐系统状态参数;并将待推荐对象划分为多级集合,各级集合之间为从属关系,每个集合对应一个选择策略,根据该推荐系统状态参数和集合的选择策略确定目标待推荐对象。本发明的推荐方法适用于各种推荐相关的应用场景,如APP应用市场的APP推荐,音/视频网站的音/视频推荐,资讯平台的资讯推荐等。采用本发明实施例有利于提高推荐效率和准确率。

Patent Agency Ranking