-
公开(公告)号:CN103281779A
公开(公告)日:2013-09-04
申请号:CN201310233725.0
申请日:2013-06-13
Applicant: 北京空间飞行器总体设计部 , 北京邮电大学
Abstract: 本发明涉及一种基于背景学习的射频层析成像方法,其主要技术特点是:包括以下步骤:1、根据无线传感器网络的接收信号强度,利用混合高斯背景学习算法或核密度估计背景学习算法建立每条链路的接收信号强度值的分布模型,判断各个链路是否受到影响;2、根据每条链路的接收信号强度值的分布模型,利用Tikhonov正则化进行图像重构。本发明将混合高斯背景学习算法或核密度估计背景学习算法(KDE)运用到射频层析成像中,来估计各个链路RSS测量值的分布,实现了多目标检测与跟踪功能,具有的优点是:1、在多目标和时变环境中能获得更高的准确性和有效性;2、不需要线下训练的过程。
-
公开(公告)号:CN103281779B
公开(公告)日:2015-08-12
申请号:CN201310233725.0
申请日:2013-06-13
Applicant: 北京空间飞行器总体设计部 , 北京邮电大学
Abstract: 本发明涉及一种基于背景学习的射频层析成像方法,其主要技术特点是:包括以下步骤:1、根据无线传感器网络的接收信号强度,利用混合高斯背景学习算法或核密度估计背景学习算法建立每条链路的接收信号强度值的分布模型,判断各个链路是否受到影响;2、根据每条链路的接收信号强度值的分布模型,利用Tikhonov正则化进行图像重构。本发明将混合高斯背景学习算法或核密度估计背景学习算法(KDE)运用到射频层析成像中,来估计各个链路RSS测量值的分布,实现了多目标检测与跟踪功能,具有的优点是:1、在多目标和时变环境中能获得更高的准确性和有效性;2、不需要线下训练的过程。
-
公开(公告)号:CN104243973A
公开(公告)日:2014-12-24
申请号:CN201410432154.8
申请日:2014-08-28
Applicant: 北京邮电大学 , 北京广电天地科技有限公司 , 国家广播电影电视总局广播电视规划院
IPC: H04N17/00
Abstract: 本发明涉及一种基于感兴趣区域的视频感知质量无参考客观评价方法,其技术特点是:在待测视频中提取包括运动区域和人类皮肤区域的感兴趣区域,对两个感兴趣区域进行融合得到最终的感兴趣区域,并赋予感兴趣区域/非感兴趣区域不同的评价权重;逐帧对图像失真程度进行评价;将上述每帧图像的评价权重及两种评价结果进行结合和转换,以匹配主观评价结果。本发明设计合理,综合考虑了运动区域和人类皮肤区域并结合两种图像中的块效应和模糊失真特征,实现了对视频质量无参考评价功能,具有较好的场景适应性并表现出了较好的与主观评价结果的相关性,不仅可以用于视频质量评价,而且还可用于图片质量的评价。
-
-