智能电网计算卸载的方法及装置

    公开(公告)号:CN113434206A

    公开(公告)日:2021-09-24

    申请号:CN202110580627.9

    申请日:2021-05-26

    Abstract: 本发明提供一种智能电网计算卸载的方法及装置,其方法包括:获取第一计算任务集合中的每个计算任务的本地执行的时延和每个计算任务的最大卸载时延;并确定每个所述计算任务的时延增益;基于所述第一计算任务集合中每个计算任务的时延增益,对所述第一计算任务集合中的每个所述计算任务进行排序;根据最小化总时延优化模型,对所述排序后的第一计算任务集合进行分类,确定所述边缘服务器执行所述计算任务集合,并执行计算卸载。通过本发明提供的智能电网计算卸载方法,以在计算资源和缓存空间约束下最小化总时延为目标,建立了最小化时延优化模型并结合时延增益,对计算任务合理分配,充分利用计算资源,达到了低时延的目标。

    网络服务质量预测的方法及系统

    公开(公告)号:CN113762737A

    公开(公告)日:2021-12-07

    申请号:CN202110956949.9

    申请日:2021-08-19

    Abstract: 本发明公开了网络服务质量预测的方法及系统,包括:获取用户数据、服务数据,将用户数据、服务数据输入至训练好的网络服务质量预测模型得到网络服务质量预测结果;其中,训练好的网络服务质量预测模型为利用不同样本数据以及对应的软标签进行训练后得到;样本数据包含用户训练数据以及服务训练数据;软标签为训练好的DeepFM模型在输入样本数据后输出的预测数据。本发明采用DeepFM模型无需人工进行特征组合,可以处理稀疏数据集,通过将训练好的DeepFM模型在输入样本数据后输出的预测数据作为软标签对网络服务质量预测模型进行训练,降低了网络服务质量预测模型规模,减轻运维负载。

    网络服务质量预测的方法及系统

    公开(公告)号:CN113762737B

    公开(公告)日:2024-09-06

    申请号:CN202110956949.9

    申请日:2021-08-19

    Abstract: 本发明公开了网络服务质量预测的方法及系统,包括:获取用户数据、服务数据,将用户数据、服务数据输入至训练好的网络服务质量预测模型得到网络服务质量预测结果;其中,训练好的网络服务质量预测模型为利用不同样本数据以及对应的软标签进行训练后得到;样本数据包含用户训练数据以及服务训练数据;软标签为训练好的DeepFM模型在输入样本数据后输出的预测数据。本发明采用DeepFM模型无需人工进行特征组合,可以处理稀疏数据集,通过将训练好的DeepFM模型在输入样本数据后输出的预测数据作为软标签对网络服务质量预测模型进行训练,降低了网络服务质量预测模型规模,减轻运维负载。

    面向智能城市网络资源的相关性分析方法及装置

    公开(公告)号:CN114186168A

    公开(公告)日:2022-03-15

    申请号:CN202111404951.1

    申请日:2021-11-24

    Abstract: 本发明提供一种面向智能城市网络资源的相关性分析方法及装置,所述方法包括:获取智能城市网络的多组不同的属性变量,并基于典型相关分析得到所述属性变量的最优相关系数;基于多核模型将所述最优相关系数对应的属性变量映射至子空间,得到网络运行数据特征向量;其中,所述多核模型是基于多种核函数进行线性组合建立的;基于欧式距离度量计算所述网络运行数据特征向量的距离,并根据所述距离和所述核函数线性组合的权重得到网络运行数据特征向量的相关性。本发明通过将多种核函数与典型相关分析相结合,从而能够对非线性的网络数据进行处理,得到更加准确的网络数据的相关性大小。

    网络流量分类方法、装置、电子设备及存储介质

    公开(公告)号:CN114338437B

    公开(公告)日:2023-12-29

    申请号:CN202210039374.9

    申请日:2022-01-13

    Abstract: 量分类网络模型识别的准确率。本发明提供一种网络流量分类方法、装置、电子设备及存储介质,将捕获的pcap文件切分为流序列,流序列由多个流量数据包组成;从流序列中提取各个流量数据包的字节特征,得到以流为单位的字节序列;对所述字节序列中的各个字节进行位置编码,并将编码后的所述字节序列输入至流量分类网络模型中,得到所述流量分类网络模型输出的流量分类结果;其中,所述流量分类网络模型是基于以流为单位的样本和样本对(56)对比文件葛宁玲《.基于相关性分析的多维数据融合方法》《.中国优秀硕士学位论文全文数据库信息科技辑》.2021,(第05期),全文.王靖华,何迪《.基于数据包字节长度的线性自回归(Autoregression)和支持向量分类机(SVM)的网络流量预测建模与分析》《.微型电脑应用》.2005,(第11期),1-3,23.Yonghua Huo;Chunxiao Song;Sheng Gao;Haodong Yang;Yu Yan;Yang Yang《.NetworkTraffic Prediction Method Based on TimeSeries Characteristics》《.10thInternational Conference on ComputerEngineering and Networks》.2020,全文.

    网络流量分类方法、装置、电子设备及存储介质

    公开(公告)号:CN114338437A

    公开(公告)日:2022-04-12

    申请号:CN202210039374.9

    申请日:2022-01-13

    Abstract: 本发明提供一种网络流量分类方法、装置、电子设备及存储介质,将捕获的pcap文件切分为流序列,流序列由多个流量数据包组成;从流序列中提取各个流量数据包的字节特征,得到以流为单位的字节序列;对所述字节序列中的各个字节进行位置编码,并将编码后的所述字节序列输入至流量分类网络模型中,得到所述流量分类网络模型输出的流量分类结果;其中,所述流量分类网络模型是基于以流为单位的样本和样本对应的流量分类结果训练后得到的。本发明为字节序列中的每个字节分别进行位置编码,可以有效提取字节序列中各字节的关键位置信息,提高流量分类网络模型识别的准确率。

Patent Agency Ranking