-
公开(公告)号:CN118818414A
公开(公告)日:2024-10-22
申请号:CN202411183169.5
申请日:2024-08-27
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司
IPC: G01R35/04
Abstract: 本发明公开了一种基于动量更新双路重构自校正电能表异常检测方法及系统,属于电能表异常检测技术领域。本发明方法,包括:获取电能表的原始时间序列数据,并基于所述原始时间序列数据生成时间序列集;基于所述时间序列集及基于动量更新Transformer记忆模块的双路重构自校正框架,训练得到用于电能表异常检测的检测模型;基于所述检测模型,根据目标电能表的时间序列集,对所述目标电能表的异常进行检测。本发明增强了模型对正常数据的学习能力同时提高正异常的区分度,提高了异常检测的性能。
-
公开(公告)号:CN118484703A
公开(公告)日:2024-08-13
申请号:CN202410561513.3
申请日:2024-05-08
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司 , 国网山西省电力公司 , 国网山西省电力公司营销服务中心
Inventor: 孟之航 , 高欣 , 李保丰 , 翟峰 , 赵兵 , 郜波 , 秦煜 , 陈昊 , 梁晓兵 , 郑安刚 , 许斌 , 徐萌 , 冯云 , 赵英杰 , 卢建生 , 任宇路 , 石智珩 , 谢振刚 , 杨子成 , 杨帅
Abstract: 本发明公开了一种基于迁移学习的电能表故障分类方法及装置。其中,方法包括:收集电能表的历史故障数据样本集;分别遍历历史故障数据样本集中的每一故障类别样本,将该故障类别下所有样本作为少数类样本集,其余各故障类别的样本作为多数类样本集,生成多个二类数据集;根据预先训练的迁移数据选择器以及迁移任务监督器,分别对多个二类数据集进行对抗迭代,生成多个迁移数据集;分别将多个迁移数据集输入至少数类样本生成模型中,生成多个平衡样本集分别训练分类器,生成多个故障类别分类器;将实时采集的待测故障数据分别输入至多个故障类别分类器,输出多个故障类别概率,并选取多个故障类别概率中最大值作为待测故障数据的故障类别。
-
公开(公告)号:CN116630989A
公开(公告)日:2023-08-22
申请号:CN202310400896.1
申请日:2023-04-14
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司 , 国网山西省电力公司营销服务中心 , 国网山西省电力公司
IPC: G06V30/19 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明提出了一种智能电表故障检测方法、系统、电子设备及存储介质,包括:预处理智能电表图像数据,得到智能电表图像数据对应的注意力图;根据注意力图的特征轮廓尺寸计算等效粒度,遍历智能电表图像数据后经过聚类挖掘得到鉴别性粒度,指导智能电表图像数据中的每张电表图像自适应划分为多粒度拼图;根据注意力图转换所得的二值图计算特征位置分布,根据特征位置分布规律对所述多粒度拼图进行自适应遮挡,并随机打乱得到多粒度掩码混淆拼图;利用多粒度掩码混淆拼图和原始图像作为检测模型的输入,对智能电表可视故障检测模型进行渐进式训练;将待测电表图像数据输入训练好的智能电表可视故障检测模型,以完成故障类别的检测。
-
公开(公告)号:CN104166867B
公开(公告)日:2017-10-10
申请号:CN201410397880.0
申请日:2014-08-13
Applicant: 北京邮电大学
IPC: G06K19/07
Abstract: 本发明涉及一种多HASH函数多帧耦合型RFID防碰撞(MHMFG)算法,该发明针对后台服务器已经统计所有标签ID信息的应用环境。MHMFG包含多个识别帧过程,每帧包括两个阶段:内部排序识别过程及外部识别过程。内部排序识别过程读写器根据保存的所有标签的ID利用多个Hash函数进行映射,根据映射结果对所有的标签ID进行预先排序并形成指导标签响应时隙的位图BitMap。外部识别过程则标签根据接收到的指导位图BitMap以确定自己响应的时隙及相应的响应位数。在完成一帧的识别后对未识别标签利用以上每帧的两个阶段继续进行识别。本发明采用内部排序识别过程及外部识别过程相结合的方法以实现对标签的快速识别,其具有实现简单、识别效率高、通信复杂度低及标签性能要求低的特点。
-
公开(公告)号:CN119128750A
公开(公告)日:2024-12-13
申请号:CN202411176227.1
申请日:2024-08-26
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司
Inventor: 高欣 , 陈玲俐 , 李保丰 , 翟峰 , 赵兵 , 郜波 , 王一帆 , 秦煜 , 陈昊 , 梁晓兵 , 郑安刚 , 许斌 , 尹建芹 , 徐萌 , 冯云 , 赵英杰 , 于秀丽
IPC: G06F18/2433 , G01R35/04 , G06N3/0455 , G06F123/02
Abstract: 本发明公开了一种基于多粒度动态感受野的电能表异常检测系统及方法,属于电能计量技术领域。本发明系统,包括:多粒度动态感受野模块,用于对电能表的补丁块数据进行遍历处理,以输出感受野数据;多维时序编解码器模块,用于对所述多粒度动态感受野模块输出的感受野数据进行重构,输出重构数据;双层异常检测模块,用于计算出所述多维时序编解码器模块输出的重构数据的异常分数,基于所述异常分数,确定电能表的异常。本发明通过感受野及数据重构,能够识别数据的异常,以此确定异常分数,并解决了现有重构方法在处理低信息密度的多维时序数据时可能出现的信息丢失或语义特征挖掘不足的问题。
-
公开(公告)号:CN118411560A
公开(公告)日:2024-07-30
申请号:CN202410523072.8
申请日:2024-04-28
Applicant: 中国电力科学研究院有限公司 , 北京邮电大学 , 国网山西省电力公司 , 国网山西省电力公司营销服务中心
Inventor: 李保丰 , 翟峰 , 高欣 , 苏俊池 , 方潇 , 赵兵 , 郜波 , 秦煜 , 陈昊 , 梁晓兵 , 郑安刚 , 许斌 , 徐萌 , 冯云 , 赵英杰 , 卢建生 , 任宇路 , 石智珩 , 谢振刚 , 杨子成 , 杨帅
IPC: G06V10/764 , G06V10/774 , G06V10/40 , G06N3/0464
Abstract: 本发明属于图像多目标检测技术领域,公开了一种目标检测模型构建方法、目标检测方法及相关装置;其中,所述目标检测模型构建方法包括:以基于YOLO框架的目标检测网络为基准模型,将基准模型的特征提取网络中的所有卷积层替换为重排网络模块和设置于重排网络模块后的无参数注意力模块,获得轻量化目标检测网络;基于选定的训练数据集对所述轻量化目标检测网络进行深度学习预训练,然后基于教师模型使用置信度蒸馏损失进行蒸馏训练,达到预设收敛条件后,构建获得目标检测模型。本发明构建获得的目标检测网络在面临复杂的检测场景和实时的检测任务时,具有较高的检测精度和检测效率。
-
公开(公告)号:CN117092582A
公开(公告)日:2023-11-21
申请号:CN202310990073.9
申请日:2023-08-08
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司 , 国网山西省电力公司营销服务中心
IPC: G01R35/04 , G06F18/213 , G06F18/214 , G06F18/22 , G06N3/0455 , G06N3/094
Abstract: 本发明公开了一种基于对抗对比自编码器的电能表异常检测方法及装置。其中,方法包括:获取待测电能表历史检测的多变量长时间序列数据;对多变量长时间序列数据进行归一化处理,划分预设窗口长度的多个时间窗口数据;将多个时间窗口数据输入至预先训练的异常检测模型中,输出每个时间窗口数据对应的重构数据,异常检测模型中采用对抗对比自编码器;根据每个时间窗口数据的重构数据以及时间窗口数据确定该时间窗口数据每个时间点的异常分数,并根据异常分数,确定每个时间点的异常程度。
-
公开(公告)号:CN104166867A
公开(公告)日:2014-11-26
申请号:CN201410397880.0
申请日:2014-08-13
Applicant: 北京邮电大学
IPC: G06K19/07
Abstract: 本发明涉及一种多HASH函数多帧耦合型RFID防碰撞(MHMFG)算法,该发明针对后台服务器已经统计所有标签ID信息的应用环境。MHMFG包含多个识别帧过程,每帧包括两个阶段:内部排序识别过程及外部识别过程。内部排序识别过程读写器根据保存的所有标签的ID利用多个Hash函数进行映射,根据映射结果对所有的标签ID进行预先排序并形成指导标签响应时隙的位图BitMap。外部识别过程则标签根据接收到的指导位图BitMap以确定自己响应的时隙及相应的响应位数。在完成一帧的识别后对未识别标签利用以上每帧的两个阶段继续进行识别。本发明采用内部排序识别过程及外部识别过程相结合的方法以实现对标签的快速识别,其具有实现简单、识别效率高、通信复杂度低及标签性能要求低的特点。
-
公开(公告)号:CN103581206A
公开(公告)日:2014-02-12
申请号:CN201310606734.X
申请日:2013-11-25
Applicant: 北京邮电大学
Abstract: 本发明涉及一种轻量级无服务型RFID安全搜索协议,该协议利用多标签碰撞实现了对目标标签隐私性防护;采用松散时间戳和单向Hash函数有效解决了RFID读写器和标签之间数据链路中可能出现的安全性问题;在没有后台服务器的情况下,采用被动标签即可实现的HASH函数保证了对标签的安全性搜索和双向认证,具有快速搜索和安全认证的优良特性。能够有效抵抗无线链路中常见的主动和被动攻击。本发明设计结构精巧、应用环境广泛、具有高安全等级和高隐私等级。
-
公开(公告)号:CN119474656A
公开(公告)日:2025-02-18
申请号:CN202411361578.X
申请日:2024-09-27
Applicant: 北京邮电大学 , 中国电力科学研究院有限公司
Inventor: 高欣 , 李强伟 , 李保丰 , 翟峰 , 赵兵 , 郜波 , 王一帆 , 秦煜 , 陈昊 , 梁晓兵 , 郑安刚 , 许斌 , 尹建芹 , 徐萌 , 冯云 , 赵英杰 , 于秀丽
IPC: G06F18/10 , G01R35/04 , G06F18/214 , G06F18/2411 , G06F18/2413 , G06F18/241 , G06F18/20 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N7/01 , G06N20/20
Abstract: 本发明公开了一种双路约束扩散模型的电能表故障检测方法及装置。其中,方法包括:获取待测电能表的多变量数据;将多变量数据输入至预先训练的故障检测模型中,输出待测电能表的检测结果,检测结果包括故障和正常,并且故障检测模型的训练过程为:基于数据标签和样本分布方法对原始少数类样本数据集以及原始多数类样本数据集进行去噪处理,获取少数类有效样本数据集以及多数类样本数据集;利用预先训练的基于双路判别器约束的扩散模型对少数类有效样本数据集进行样本扩散,生成少数类样本数据集;利用少数类样本数据集、所述少数类有效样本数据集以及多数类样本数据集训练预先构建的分类模型,生成故障检测模型。
-
-
-
-
-
-
-
-
-