一种基于加权列抽样XGBoost的图像目标分类方法

    公开(公告)号:CN107392241B

    公开(公告)日:2020-12-25

    申请号:CN201710580163.5

    申请日:2017-07-17

    Abstract: 本发明实施例提出了一种基于加权列抽样XGBoost的图像目标分类方法,包括:利用在大型数据集ILSVRC预训练过的并且在PASCAL VOC 2012数据集上进行过微调的卷积神经网络提取目标图像特征;连接多层学习到的特征以获得更多决定其图像类别的内容信息;利用基于加权列抽样的XGBoost方法对图像特征分类,根据属性重要度,在构建决策树之前对属性进行次采样,将抽取的具有更多信息的属性用于当前决策树的构建,重复迭代直到收敛,得到性能最佳的图像分类模型。根据本发明实施例提供的技术方案,当数据的属性维度大且冗余度高时,该方法可以扩展到其他使用列抽样的分类方法,提高图像目标分类的平均准确率。

    一种基于模型自适应选择的多分类模型融合方法

    公开(公告)号:CN109086825A

    公开(公告)日:2018-12-25

    申请号:CN201810876135.2

    申请日:2018-08-03

    Abstract: 本发明实施例提出了一种基于模型自适应选择的多分类模型融合方法,包括:分别计算基分类模型对每一类样本的分类准确率,对结果输出为概率值的分类模型,取其分类结果的Top-N分类标签集;根据各基分类模型对每类样本的分类准确率最大值,设置各类样本的动态准确率阈值,并对各数据集样本设置分类结果融合标记;根据样本的融合标记,对每一个样本自适应选择参与融合的基分类模型,结合基分类模型的Top-N分类标签集,实现基分类模型融合。本发明实施例提供的技术方案,可以将结果输出形式分别为概率值和样本所属类标签的两个基分类模型进行有效融合,能针对每一个数据样本实现基分类模型的自适应选择,提高融合之后分类模型的准确率。

Patent Agency Ranking