-
公开(公告)号:CN117943044A
公开(公告)日:2024-04-30
申请号:CN202410107598.8
申请日:2024-01-25
IPC: B01J23/889 , B01D53/86 , B01D53/62 , B01J23/00 , B01J37/10 , B01J37/34 , B01J37/03 , B01J35/61 , B01J35/40 , C01B32/40
Abstract: 本发明属于空气污染物催化氧化技术领域,涉及一种过渡金属掺杂ε‑MnO2催化剂及制备方法与应用。本发明首先采用增强柠檬酸水热法结合微波辅助超声技术制备ε‑MnO2催化剂载体;然后通过沉淀‑沉积法制备过渡金属(铜、钴、铁、镍)掺杂的ε‑MnO2催化剂。与传统合成方法要求苛刻,本发明制备的ε‑MnO2方法简单,原料易得,可重复性好,产出比高,节约成本;通过沉积‑沉淀掺杂过渡金属元素,能够制备出大量氧空位的同时又具有更高的迁移率进而促进电子转移。制备的催化剂形貌呈现颗粒状,大小均匀,具比表面积大,可宏观制备、环境友好、易回收;并且能够高效去除废气中的CO且去除温度低。
-
公开(公告)号:CN117816134A
公开(公告)日:2024-04-05
申请号:CN202410111870.X
申请日:2024-01-26
IPC: B01J20/26 , B01J20/28 , C02F1/28 , B01J20/30 , C02F101/00
Abstract: 本发明涉及一种三维连续开孔结构Janus型海水提铀吸附剂及制备方法,属于吸附分离功能材料技术领域。本发明将反应体系1和反应体系2在低温环境聚合后利用氯化钠水溶液中的水将结晶状态的有机溶剂置换,然后再对吸附位点进行改性,最后获得三维连续开孔结构Janus型海水提铀吸附剂。本发明制备的维连续开孔结构Janus型海水提铀吸附剂基质可经过简单的修饰与转化实现铀酰离子吸附位点。使用盐酸羟胺反应将“C≡N”转化成偕胺肟吸附位点。本发明海水提铀吸附剂的上层为疏水层,在阳光的作用下易发生光热,疏水作用下有助于水蒸气的蒸发,开孔的三维网络结构有助于水分自下向上的快速补给,从而连续穿过孔道结构并吸附铀。
-
公开(公告)号:CN114784276B
公开(公告)日:2023-10-27
申请号:CN202210389138.X
申请日:2022-04-13
Applicant: 北京理工大学
IPC: H01M4/62 , H01M4/13 , H01M10/0525 , H01M10/42
Abstract: 本发明涉及一种具有电子、离子导电性的复合材料、制备方法及其应用,属于无机全固态锂离子电池技术领域。以所述复合材料的总质量为100%,各组成成分及其质量百分数如下:碳材料76%~90%;聚合物5%~12%;锂盐5%~12%;所述复合材料中锂盐和聚合物包覆在碳材料表面。所述方法通过将碳材料、聚合物和锂盐在溶剂中充分搅拌分散,真空干燥后得到所述复合材料。将所述复合材料与无机固态电解质和正极活性物质混合制备得到无机全固态锂电池的复合正极,可以优化无机全固态锂电池复合正极中离子和电子导通网络,进而有效提升无机全固态锂电池的倍率性能和循环稳定性。
-
公开(公告)号:CN116173922A
公开(公告)日:2023-05-30
申请号:CN202310189308.4
申请日:2023-03-02
Applicant: 北京理工大学
IPC: B01J20/26 , B01J20/30 , C08F220/46 , C08F220/06 , C08F222/14 , C22B60/02 , C22B3/24
Abstract: 本发明涉及一种高强度且具有三维连续多级孔隙结构的铀吸附剂及其制备方法,属于吸附材料技术领域。所述铀吸附剂中,乙烯基单体与丙烯腈共聚物形成第一网络,疏水线性分子链物理交联形成第二聚合物网络,第一网络和第二网络全互穿形成双网络分子结构;疏水线性分子链中含有偕胺肟基团和席夫碱吸附位点;所述铀吸附剂为空间具有三维连续性超大孔隙结构和孔壁具有丰富微小孔隙结构的多级孔隙结构。所述铀吸附剂的铀酰离子吸附量为200~1000mg/g。
-
公开(公告)号:CN114784276A
公开(公告)日:2022-07-22
申请号:CN202210389138.X
申请日:2022-04-13
Applicant: 北京理工大学
IPC: H01M4/62 , H01M4/13 , H01M10/0525 , H01M10/42
Abstract: 本发明涉及一种具有电子、离子导电性的复合材料、制备方法及其应用,属于无机全固态锂离子电池技术领域。以所述复合材料的总质量为100%,各组成成分及其质量百分数如下:碳材料76%~90%;聚合物5%~12%;锂盐5%~12%;所述复合材料中锂盐和聚合物包覆在碳材料表面。所述方法通过将碳材料、聚合物和锂盐在溶剂中充分搅拌分散,真空干燥后得到所述复合材料。将所述复合材料与无机固态电解质和正极活性物质混合制备得到无机全固态锂电池的复合正极,可以优化无机全固态锂电池复合正极中离子和电子导通网络,进而有效提升无机全固态锂电池的倍率性能和循环稳定性。
-
公开(公告)号:CN110828734A
公开(公告)日:2020-02-21
申请号:CN201911114322.8
申请日:2019-11-14
Applicant: 北京理工大学
IPC: H01M2/10
Abstract: 本发明公开的一种电池电芯外加力学约束参数可调的模组结构,属于能源电池领域。本发明包括控制装置和加载结构,控制装置包括上部件和下部件,加载结构包括左夹板和右夹板,加载结构之间放置电池电芯,左夹板上、下两端分别与上部件和下部件连接,右夹板上、下两端分别与上部件和下部件连接;根据电池电芯的膨胀方向,通过控制上部件、下部件分别驱动左夹板、右夹板的轴向移动,轴向移动为沿着上部件和下部件长度方向的移动,调控电池电芯在循环过程中受到的外加力学约束,从而提高电池模组的使用寿命。调控电池电芯在循环过程中受到的外加力学约束包括主动或被动地调控,主动调控采用主动电动控制或主动液压控制,被动调控采用被动弹簧控制。
-
公开(公告)号:CN110676410A
公开(公告)日:2020-01-10
申请号:CN201910967898.2
申请日:2019-10-12
Applicant: 北京理工大学
IPC: H01M2/10 , H01M10/613 , H01M10/625 , H01M10/6562
Abstract: 本发明公开的用于软包电池模组的轻量化多功能结构,属于能源电池领域,本发明采用点阵结构板,点阵结构板采用复合材料,点阵结构板的刚度需要有效地限制软包电池的膨胀,且为软包电池提供抑制膨胀的压力。点阵结构板需要在保证刚度的前提下尽量选用轻质复合材料进而减小软包电池模组的质量。采用轻质复合材料点阵结构刚性板固定软包电池之后组装成软包电池模组,不仅能够减少现有软包电池模组的重量,提高软包电池模组的能量密度,而且能够有效地限制软包电池的膨胀,为模组中软包电池提供抑制膨胀的压力,此外通过散热结构及时地扩散软包电池循环过程中产生的热量,预防电池热失控的发生,从而提高软包电池模组的循环性能和安全性能。
-
公开(公告)号:CN110380124A
公开(公告)日:2019-10-25
申请号:CN201910652933.1
申请日:2019-07-19
Applicant: 北京理工大学
IPC: H01M10/058 , G01N23/046 , G01R31/385
Abstract: 本发明涉及一种可原位表征锂电池电解液三维浸润过程的定量化方法,属于电池原位表征领域。通过向电解液中添加造影剂,在不影响电池性能的前提下实现电解液浸润过程的CT扫描,并对电解液浸润过程进行定量化分析,从而分析电解液的浸润机理。本方法包括:CT-锂电池注液系统搭建、造影剂种类选择、CT图像后处理等。本发明可以对电池注液装置抽真空,从而可以使电池的测试环境更加接近实际的注液环境,并向电解液中添加造影剂增加电解液在CT图像中的显影度,以便更准确得定量化分析电解液在电池中的注液过程,从而指导电池的产业化生产以及后续的研究。
-
公开(公告)号:CN119735197A
公开(公告)日:2025-04-01
申请号:CN202510086549.5
申请日:2025-01-20
Abstract: 本发明属于碳气凝胶材料的制备技术领域,具体涉及一种氮掺杂碳气凝胶及其制备方法与应用。利用两种成本低廉且氮含量丰富的前驱体——丙烯酰胺和苯胺,制备了一种三维互连微孔结构的碳气凝胶。首先制备高吸收性的三维连通的聚丙烯酰胺介质;然后利用其高强度的吸收性,低温状态下充分吸收苯胺的反应液,冷冻条件下,苯胺在冰晶的作用下均匀分散并有序聚合,解决了传统聚苯胺制备的团聚难以分散的问题;最后采用活化剂对气凝胶进行活化造孔。所述碳气凝胶因其高氮含量、富含大量碱性活性位点以及三维互连的微孔结构,显著提升了CO2的吸附能力。
-
公开(公告)号:CN117942923B
公开(公告)日:2024-09-10
申请号:CN202410110962.6
申请日:2024-01-26
Abstract: 本发明属于吸附材料技术领域,涉及2‑巯基苯并咪唑功能化Bi/Mg氧化物及制备方法和应用。本发明首先采用NaOH将铋盐和镁盐于水中进行沉淀,而后立即加入乙二醇,体系预热后进行水热反应得到Bi/Mg氧化物;再将Bi/Mg氧化物分散于水中,并与2‑巯基苯并咪唑的乙醇溶液混合均匀,进行溶剂热反应,得到2‑巯基苯并咪唑功能化Bi/Mg氧化物。所述2‑巯基苯并咪唑官能化Bi/Mg氧化物的结构,提高了在高温下进行吸附的结构稳定性,实现了快速的碘捕获和高碘吸收能力。
-
-
-
-
-
-
-
-
-