基于复数神经网络的非训练相位重建方法及装置

    公开(公告)号:CN115099389B

    公开(公告)日:2024-09-20

    申请号:CN202210622995.X

    申请日:2022-06-02

    Abstract: 本发明提出一种基于复数神经网络的非训练相位重建方法及装置,其中方法包括,S1、获取目标的采集数据;S2、构建复数神经网络,复数神经网络的输入是采集数据,输出是目标场景的幅值图像和相位图像;S3、使用复数神经网络作为生成器,输入采集数据,输出重建的幅值图像与相位图像;使用重建的幅值图像与相位图像根据物理成像模型计算得到仿真采集数据;通过最小化仿真采集数据与采集数据的差异来更新网络参数;S4、重复进行S3,使得网络参数更新收敛,输出最终的目标的幅值图像和相位图像。本发明解决了传统实数神经网络缺乏实部与虚部间信息交互、对复数信号表征能力弱的问题,并且无需额外训练样本,对数据依赖性低。

Patent Agency Ranking