-
公开(公告)号:CN110442134A
公开(公告)日:2019-11-12
申请号:CN201910706421.9
申请日:2019-08-01
Applicant: 北京理工大学
IPC: G05D1/02
Abstract: 本发明提供一种基于双层网络的多智能体群集控制方法,设计了双层网络,智能体通过上层网络分布式地估计自身的期望速度,操作员的输入能够通过上层网络进行操作员操作意图的前馈,影响每个智能体的期望速度的估计过程;然后通过传递各自的期望速度,通过下层网络快速计算出各自的实际速度和实际运动方向,实现各智能体的速度一致、距离保持、跟随人的输入进行运动;由此可见,本发明中的每个智能体更早地意识到集群的运动趋势,将人的控制意图更快地传给整个多智能体系统,能够提高多智能体系统对输入的响应,保证了操作员的操作效率,还降低了操作员的精力损耗,降低了多智能体系统的人机比例,从而降低了任务人工成本。
-
公开(公告)号:CN104898659B
公开(公告)日:2017-08-11
申请号:CN201510106591.5
申请日:2015-03-11
Applicant: 北京理工大学
Abstract: 本发明提供一种基于模型预测的人机协同控制方法,属于机器人控制领域。其将机器人的预定目的地、预定轨线表示为系统状态的末端约束条件;在每一控制时刻预测人的控制输入;构建带有非对称度量性质的代价函数;通过投影算法求取既能满足末端约束又能最小化代价函数的控制序列;按模型预测控制方法,取所得第一项为当前时刻的控制量;通过令预测窗口逐渐缩小,配合代价函数的非对称度量性质,可以实现机器人的动态自治。本方法以保证机器人自身约束得以满足为基础,最大程度地遵从了人类的控制输入,以此实现避障,此方法也可用于解决传感器失灵或信息不足时的各类人机协同控制问题。
-
公开(公告)号:CN104881044B
公开(公告)日:2016-12-21
申请号:CN201510319327.X
申请日:2015-06-11
Applicant: 北京理工大学
IPC: G05D1/12
Abstract: 本发明公开了一种姿态未知的多移动机器人系统自适应跟踪控制方法,该方法包括如下步骤:针对多移动机器人系统中的每个移动机器人,均进行建模;建立跟随者f与领航者r的具备非线性扰动的误差模型为,在多移动机器人系统中,每个移动机器人均获取其他移动机器人的信息进行非线性扰动评估,获得该移动机器人的非线性扰动的估计值;建立非线性扰动系数的自适应律为;对跟随者与领航者误差角的三角函数建立二阶观测器;最后将观测器与自适应律相结合建立基于观测器的自适应的跟随者的控制律,对跟随者进行跟踪控制,使跟随者能够实现对领航者的跟踪控制。
-
-