一种针对随机特性的贝叶斯神经网络非线性均衡方法

    公开(公告)号:CN116015458B

    公开(公告)日:2024-08-02

    申请号:CN202211595824.9

    申请日:2022-12-12

    Abstract: 本发明公开的一种针对随机特性的贝叶斯神经网络非线性均衡方法,属于光纤通信技术领域。本发明对模分复用光纤通信系统的非线性进行推导,通过拟合模分复用光纤通信系统非线性特性进行数据采集;将贝叶斯神经网络模型中的参数初始化为标准正态分布,根据不同输入信号自适应贝叶斯神经网络非线性均衡模型的权重和偏差,通过变分学习找到使KL散度最小化的变分参数;基于训练好的贝叶斯神经网络非线性均衡模型,准确识别出不同情况下传输的不同信号的误码率特性,通过非线性均衡处理实现高准确度的数据恢复,有效缓解信号在光纤传输过程中受到的光纤非线性效应的影响,提升通信系统在不同工况下的鲁棒性。本发明还具有泛化能力强、复杂度低的优点。

    基于双向GRU-条件随机场的非线性均衡方法

    公开(公告)号:CN114285715A

    公开(公告)日:2022-04-05

    申请号:CN202111558697.0

    申请日:2021-12-20

    Abstract: 本发明公开的基于双向GRU‑条件随机场的非线性均衡方法,属于光纤通信技术领域。本发明实现方法为:发送和采集M‑QAM信号序列,构建每个M‑QAM信号的特征序列,构建训练数据集;构建基于双向GRU‑条件随机场的非线性均衡模型;利用训练数据集对双向GRU‑条件随机场模型进行训练;使用训练好的双向GRU‑条件随机场模型对每个M‑QAM信号的特征序列进行标签序列的预测,输出得到每个M‑QAM信号的预测标签序列;将输出的预测标签序列的中间标签结果作为M‑QAM信号所对应的类别,通过M‑QAM星座符号解映射后,得到相对应二进制数据,实现高准确度的数据恢复,有效降低信号在长距离传输过程中受到的由于器件和光纤的非线性效应造成的影响,降低通信系统的误比特率,提升通信系统的传输性能。

Patent Agency Ranking