-
公开(公告)号:CN106788427A
公开(公告)日:2017-05-31
申请号:CN201611081335.6
申请日:2016-11-30
Applicant: 北京无线电计量测试研究所
IPC: H03L7/26
CPC classification number: H03L7/26
Abstract: 本申请公开了一种用于汞离子微波频标的囚禁射频源,用以解决目前汞离子微波频标用囚禁射频源频率较低、稳定度较差的问题。所述囚禁射频源包括振荡器、移相分路模块、第一功放模块、第二功放模块、升压器、第一可调电容、第二可调电容、离子阱;振荡器用于产生振荡信号;移相分路模块用于将振荡信号分为两路相位相反、频率相同的正相振荡、反相振荡;第一功放模块放大正相振荡,产生正相振荡放大信号;第二功放模块放大反相振荡产生反相振荡放大信号;升压器与第一功放模块、第二功放模块的输出相连,进行升压产生正相振荡升压信号和反相振荡升压信号,分别输入到离子阱的两个电极。本申请的方案频率稳定度高、输出电压幅度稳定、集成和小型化。
-
公开(公告)号:CN106647224A
公开(公告)日:2017-05-10
申请号:CN201611151152.7
申请日:2016-12-14
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开一种无极汞灯包括:透镜组、汞泡、激励源和温控装置,所述汞泡包括相互连通的发光部和冷端部,发光部为圆柱形,冷端部为圆柱形或长方体形,发光部与冷端部的连接处的直径小于发光部的直径,所述汞泡内填充有纯汞或同位素Hg202。本发明的汞泡采用双泡结构将发光和贮存汞的泡体功能分离,同时发光部与冷端部之间通过小直径的连接部连通,其中发光部耦合外置线圈发光,冷端部储存汞并连接控温装置,上述结构使液态的汞不易流入发光部中,减弱了汞渗入发光部的泡壁损耗成雾状的现象的发生。此外,通常的冷端多为细长型极为短小,本发明的冷端部与发光部的尺寸几乎相同,与温控装置的接触面积大,易于散热控制温度。
-
公开(公告)号:CN105467821A
公开(公告)日:2016-04-06
申请号:CN201510868460.0
申请日:2015-12-01
Applicant: 北京无线电计量测试研究所
IPC: G04F5/14
CPC classification number: G04F5/145
Abstract: 本发明公开了一种相干布居囚禁原子钟的物理系统,所述物理系统包括:在空间上分离设置的激光发射单元和物理单元。其中,激光发射单元包括:激光发射器基板、设于激光发射器基板上的激光发射器、设于激光发射器基板上且分布于激光发射器周围的金属导热构件、以及处于激光发射器所发射的光源形成的光路上的衰减片。物理单元包括:四分之一波片、吸收泡、光电池、光电池基板、金属导热层、磁场线圈、磁屏蔽层、磁屏蔽层顶盖、保温层以及数据传输线。通过采用本发明的物理系统,使得其中的激光发射单元和物理单元,在空间上实现分离,也就不会出现热能传递的现象,从而保证了原子钟的工作稳定性。
-
公开(公告)号:CN104297598A
公开(公告)日:2015-01-21
申请号:CN201410558638.7
申请日:2014-10-20
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开一种VCSEL的多参数测试装置及方法,该装置及方法包括:可调电流源给VCSEL供电、准直透镜接收VCSEL的发散激光并输出平行光束、消偏振分光镜接收平行光束并分别输出第一和第二光束、聚焦透镜将第一光束聚焦为聚焦光束、光纤探头接收聚焦光束并输出测试信号至光纤光谱仪测量光谱参数、偏振分光镜将第二光束分光,分别输出水平线偏振光束和垂直线偏振光束至第一、第二光电探测器并分别测量光强,分别记录以上两个光强首次不为零时可调电流源的电流为水平和垂直偏振模式的阈值。本发明所述技术方案,解决了对VCSEL的多参数高效测试的问题,可同时测量VCSEL的光谱参数、水平偏振模式的阈值和垂直偏振模式的阈值。
-
公开(公告)号:CN104090482A
公开(公告)日:2014-10-08
申请号:CN201410363741.6
申请日:2014-07-28
Applicant: 北京无线电计量测试研究所
Abstract: 本发明公开了一种用于便携式原子钟的光学系统,该光学系统包括VCSEL激光器、透镜、四分之一波片、热敏电阻测量电路、PID控制电路、TEC组件和光电探测器;所述VCSEL激光器依次与所述热敏电阻测量电路、所述PID控制电路和所述TEC组件电连接;所述VCSEL激光器和所述四分之一波片分别设置于所述透镜的两侧,所述四分之一波片的远离所述透镜的一侧设置有所述光电探测器;所述VCSEL激光器、所述透镜、所述四分之一波片和所述光电探测器位于同一直线上。本发明提供的光学系统具有小型化、低功耗的优点,其体积小于10ml,其功耗小于6mW,且所述光学系统能够用于便携式原子钟。
-
公开(公告)号:CN103929175A
公开(公告)日:2014-07-16
申请号:CN201410155852.8
申请日:2014-04-17
Applicant: 北京无线电计量测试研究所
IPC: H03L7/26
Abstract: 本发明涉及一种CPT原子频标的量子系统装置,该装置包括纵腔面发射激光器VCSEL、衰减片、λ/4波片A、λ/4波片B、反射镜A、半透明反射镜、光电探测器、极化分光镜PBS、磁场线圈、磁屏蔽桶、Rb泡、λ/4波片C、反射镜B。所述的CPT原子频标量子系统装置具有同向传播的左右旋圆偏振光CPT、反向传播的左右旋圆偏振光CPT、push-pull CPT三种不同偏振构型的CPT原子频标量子系统装置的特点。该装置结构简单、体积小、对比度高。基于该装置的CPT原子频标的量子系统非常适用于低功耗、小体积、高精度、高稳定度的小型化CPT原子频标。
-
公开(公告)号:CN108917922B
公开(公告)日:2021-09-10
申请号:CN201810742056.2
申请日:2018-07-09
Applicant: 北京无线电计量测试研究所
IPC: G01J1/00
Abstract: 本发明公开了一种激光功率的量子测量方法。本发明利用了原子特性及原子频标系统,将对激光功率的直接测量转变成对原子跃迁频率的测量,是原子光谱技术与光功率测量的结合,与现有的方法相比,具有原理上的创新。现有的测量方法可达到的测量精度受限,报道的最优值在10‑4量级,不能满足日益增长的精密测量需求。本发明提高了测量精度,理论上可提高1~2个量级甚至更多,达到10‑5至10‑6量级。将提高对激光功率的测量能力、提高光学计量能力,可促进激光计量行业的发展。
-
公开(公告)号:CN109239625B
公开(公告)日:2021-02-02
申请号:CN201811239169.7
申请日:2018-10-23
Applicant: 北京无线电计量测试研究所
Inventor: 张振伟
IPC: G01R33/032 , G01R35/02
Abstract: 本申请实施例中提供了一种基于频率校准的原子磁强计和测量方法,该原子磁强计包括:校准激光产生模块,根据产生的激光束校准直流信号和微波信号,并将校准的直流信号和微波信号进行耦合,驱动激光器产生校准的激光束;测量分析单元,根据待测磁场方向调整测量方向,获取与激光束相对应的原子磁共振能级谱,并对其进行处理,获得磁共振谱线间隔的频差。本申请所述技术方案能够在测量过程中存在未知待测磁场方向时,自适应的随之调整测量方向,避免由于测量方向偏差导致的测量结果精度不足的问题,从而提高原子磁强计的测量精度;本申请所述技术方案通过对微波信号和直流信号进行反馈校准,从而锁定激光束的输出频率,提高测量精度。
-
公开(公告)号:CN108259039B
公开(公告)日:2021-01-26
申请号:CN201711265525.8
申请日:2017-12-05
Applicant: 北京无线电计量测试研究所
IPC: H03L7/26
Abstract: 本申请公开了一种汞离子微波频标真空制备方法,包括:将所述汞离子微波频标的真空系统封装;对所述封装真空系统检漏和补漏,直至不漏;对检漏后的真空系统利用分子泵组真空预抽;对所述预抽真空系统表面加热至200℃烘烤,同时,通过220V交流电对离子泵烘烤,二者持续烘烤一周;打开离子泵,对持续烘烤的所述预抽真空系统抽真空24±2小时;对所述高真空系统内的真空规和质谱仪除气;对钛升华泵除气,停止烘烤;每隔30分钟对钛升华泵接通48A直流电5分钟,反复操作3次,关闭钛升华泵;利用离子泵继续抽取真空24±2小时,得到超高真空系统。本发明可制备真空度为2E‑9Pa量级的超高真空系统,比现有系统提高一个数量级。
-
公开(公告)号:CN110380732A
公开(公告)日:2019-10-25
申请号:CN201910653971.9
申请日:2019-07-19
Applicant: 北京无线电计量测试研究所
Inventor: 张振伟
IPC: H03M1/80
Abstract: 本发明公开一种数字模拟转换电路。该数字模拟转换电路的具体实施方式包括:第一电阻器、第二电阻器、第三电阻器、第一数字模拟转换器和转换位数小于所述第一数字模拟转换器的第二数字模拟转换器,所述第一数字模拟转换器的参考电压输入端和第二数字模拟转换器的参考电压输入端分别连接参考电压源,所述第一数字模拟转换器的输出端连接第一电阻器的第一端,所述第二数字模拟转换器的输出端连接第二电阻器的第一端,所述第一电阻器的第二端和第二电阻器的第二端分别连接第三电阻器的第一端,所述第三电阻器的第二端作为数字模拟转换电路的输出端。该实施方式可低成本的实现高位数字模拟转换,从而实现高精度高分辨率的模拟信号输出。
-
-
-
-
-
-
-
-
-