一种环形光瞳共焦布里渊显微系统

    公开(公告)号:CN113624682A

    公开(公告)日:2021-11-09

    申请号:CN202110756824.1

    申请日:2021-07-05

    Abstract: 本发明提出一种环形光瞳共焦布里渊显微系统,解决现有共焦布里渊光谱测量系统计算复杂、计算精度差的问题。所述系统,包含:照明模块、分光平片、环形光阑、测量物镜、光谱探测模块;所述照明模块用于产生偏振方向可选的线偏振激光作为入射光;所述入射光经所述分光平片反射进入所述环形光阑,经环形光阑整形后通过所述测量物镜聚焦于待测样品上;待测样品经激发产生的布里渊散射光被所述测量物镜收集,进入所述环形光阑,经所述环形光阑调制后通过所述分光平片透射到所述光谱探测模块;所述光谱探测模块,用于收集探测待测样品的布里渊散射光光谱。本发明可实现高空间分辨、高光谱分辨环形光瞳共焦布里渊显微系统。

    一种基于频谱的太赫兹材料复折射率测量方法

    公开(公告)号:CN113310941A

    公开(公告)日:2021-08-27

    申请号:CN202110386569.6

    申请日:2021-04-12

    Abstract: 本发明公开了一种基于频谱的太赫兹材料复折射率测量方法,包括,利用频谱测量仪进行样品测量,基于测量数据得到离散频谱上的频率透射率T(f)和时域反射特性t(τ);将所述频率透射率T(f)表示为法布里‑珀罗干涉(FP干涉)形式,并基于所述时域反射特性t(τ)取得τ0;定义高斯函数g(τ,τ0)和其对应的频谱G(f,τ0);基于所述高斯函数g(τ,τ0)对所述频率透射率T(f)进行处理获得更新后的频谱透射率T′(f,τ0);基于所述处理后的频谱透射率得到所述局部极大值(极小值)组数m和复折射率实部n,并计算得到初始相位φ;根据Kramers‑Kronig关系计算所述复折射率的虚部k,得到所述样品的复折射率和吸光度。

    一种冷原子系统自旋压缩态的制备方法

    公开(公告)号:CN113014257A

    公开(公告)日:2021-06-22

    申请号:CN202110201423.X

    申请日:2021-02-23

    Abstract: 本发明公开一种冷原子系统自旋压缩态的制备方法,包括:提供一两分量自旋系统,其包括二维势阱,所述二维势阱具有其原子自旋态依赖于原子相互作用的能级结构;向所述二维势阱施加拉曼光,以使所述二维势阱中由原子相互作用等效产生的自旋相互作用不为零;记录来自二维势阱的自旋波动信号,从所述自旋波动信号中确定自旋压缩的变化情况;根据所述自旋压缩的变化情况,测量自旋压缩参数最小时的自旋压缩性质,以产生自旋压缩态。本发明的优点是:实现简单,突破量子系统测量极限的限制,为提高量子精密测量精度提供新的方法,使得自旋压缩态更加稳定。

    一种用于便携式原子钟的光学系统及其控制方法

    公开(公告)号:CN104090482A

    公开(公告)日:2014-10-08

    申请号:CN201410363741.6

    申请日:2014-07-28

    Abstract: 本发明公开了一种用于便携式原子钟的光学系统,该光学系统包括VCSEL激光器、透镜、四分之一波片、热敏电阻测量电路、PID控制电路、TEC组件和光电探测器;所述VCSEL激光器依次与所述热敏电阻测量电路、所述PID控制电路和所述TEC组件电连接;所述VCSEL激光器和所述四分之一波片分别设置于所述透镜的两侧,所述四分之一波片的远离所述透镜的一侧设置有所述光电探测器;所述VCSEL激光器、所述透镜、所述四分之一波片和所述光电探测器位于同一直线上。本发明提供的光学系统具有小型化、低功耗的优点,其体积小于10ml,其功耗小于6mW,且所述光学系统能够用于便携式原子钟。

    一种光波增透型原子气泡及其使用方法

    公开(公告)号:CN103501180A

    公开(公告)日:2014-01-08

    申请号:CN201310429757.8

    申请日:2013-09-18

    Abstract: 本发明公开了一种光波增透型原子气泡及其使用方法,该光波增透型原子气泡(1)包括入射壁(11)、出射壁(12)和侧壁(13);入射壁(11)的两侧设有第一增透介质层(14)和第二增透介质层(15);出射壁(12)的两侧设有第三增透介质层(16)和第四增透介质层(17);入射壁(11)、出射壁(12)、第一增透介质层(14)、第二增透介质层(15)、第三增透介质层(16)和第四增透介质层(17)相互平行;入射壁(11)、出射壁(12)和侧壁(13)围成的空腔(18)内充有原子气体。本发明的光波增透型原子气泡的入射壁和出射壁的两侧都设有增透介质层,能够避免入射壁和出射壁对光波的反射作用,一方面提高光波增透型原子气泡对光波的透射率,降低光波增透型原子气泡的功耗;另一方面避免对光源的损毁,延长光源的使用寿命。

    含缓冲气的原子气体中各组分比例的检测方法及装置

    公开(公告)号:CN103472000A

    公开(公告)日:2013-12-25

    申请号:CN201310446997.9

    申请日:2013-09-25

    Abstract: 本发明公开了含缓冲气的原子气体中各组分比例的检测方法:将准直激光器作为探测光源输出准直光束;准直光束通过格兰泰勒棱镜得到线偏振准直光束;线偏振准直光束的总光强由光强功率计进行测量并将测量得到的数据传输至电脑;线偏振准直光束入射到样品台上并在通过样品台后形成向四周扩散的传输光;向四周扩散的传输光的光强由积分球和示波器进行测量并将测量得到的数据传输至电脑;向四周扩散的传输光的光强和线偏振准直光束的总光强由电脑进行数据分析计算得到向四周扩散的传输光的透射率,进一步计算得出含缓冲气体的原子气体中非缓冲气体和缓冲气体的组分比例F。解决了封闭气室中含缓冲气体的原子气体组分无损检测问题。同时还公开了该装置。

    一种压控晶振的电压锁定方法、系统、装置和存储介质

    公开(公告)号:CN119995593A

    公开(公告)日:2025-05-13

    申请号:CN202411966063.2

    申请日:2024-12-30

    Abstract: 本发明公开一种压控晶振的电压锁定方法、系统、装置和存储介质,包括得到不同频率下的第一荧光信号数量值,获取所述系统的中心频率和调制深度;获得不同所述电压下囚禁离子场的第二荧光信号数量值,获取中心频率对应的中心电压值,中心电压值为待锁定的电压数值;按顺序循环执行第一次左侧频率探测、第一次右侧频率探测和第二次左侧频率探测,并收集荧光信号分别获取探测后的第三荧光信号数量值、第四荧光信号数量值和第五荧光信号数量值;第三、五荧光信号数量值相加减去第四荧光信号数量值的两倍作为信号差值;根据信号差值反馈调节所述压控晶振的电压达到所述中心电压值,锁定电压。本方法的荧光信号探测收集、时序逻辑控制和算法处理可仅使用单片机实现,操作简单。

    一种超稳腔温度监测装置、制备方法和应用

    公开(公告)号:CN119845445A

    公开(公告)日:2025-04-18

    申请号:CN202411688247.7

    申请日:2024-11-22

    Abstract: 本申请提供一种超稳腔温度监测装置、制备方法和应用,使得温度控制的精度进一步提升。该制备方法包括:将空心氧化硅毛细管置于氢气火焰上加热,在加热过程中,将空心氧化硅毛细管进行两端拉伸,使得空心氧化硅毛细管中间细,两边粗;将空心氧化硅毛细管一端封死,从另一端向空心氧化硅毛细管内加压,直至空心氧化硅毛细管内的大气压增加到预设值;使用二氧化碳激光器辐照空心氧化硅毛细管的中间部位,使得空心氧化硅毛细管中间形成微泡腔;将光纤置于氢气火焰上加热,在加热过程中,将光纤进行两端拉伸,使得光纤中间细,两边粗;将处理后具有所述微泡腔的空心氧化硅毛细管与处理后的光纤进行耦合,组合成十字型结构,得到超稳腔温度监测装置。

    一种基于量子相干布局囚禁原理的磁场测量系统及方法

    公开(公告)号:CN119828052A

    公开(公告)日:2025-04-15

    申请号:CN202411970687.1

    申请日:2024-12-30

    Abstract: 本发明属于量子精密测量技术领域,并具体公开了一种基于量子相干布局囚禁原理的磁场测量系统及方法,包括:经微波源调制的激光器用于产生线偏振光;λ/4波片用于将线偏振光转化为圆偏振光;圆偏振光经过受外界被测磁场影响的碱金属原子气室后入射到光电探测器上;探测器将光信号转变为电信号后经过数据采集后作为误差信号;误差信号经PID反馈控制微波源中心频率;整个系统以分时复用的方式工作在原子钟模式和磁力仪模式,分别用于产生校准参考频率和磁场Larmor频率,进而解算得到被测磁场值。

Patent Agency Ranking