全息数据存储的快速读出系统及方法

    公开(公告)号:CN101290781A

    公开(公告)日:2008-10-22

    申请号:CN200810115109.4

    申请日:2008-06-18

    Abstract: 本发明涉及一种全息数据存储的快速读出系统及方法,属于光存储技术领域。本发明的快速读出方法是一种先在全息介质上以一定间隔记录多个全息图,然后利用精密寻址设备、电光开关、高速图像采集设备三者之间的同步工作,从而在全息介质高速运动的状态下,实现对多个全息图的高速读出。根据本方法所设计的全息数据存储的快速读出系统,由微动定位控制器,脉冲发生器、高速精密寻址设备、高速电光开关、高速图像采集设备、激光器以及必要的光学元件组成,可以实现在连续读出多个全息图的过程中,全息介质始终处于高速运动的状态,从而实现对全息图的连续高速读出。

    三维盘式全息存储方法及系统

    公开(公告)号:CN1322498C

    公开(公告)日:2007-06-20

    申请号:CN200510070880.0

    申请日:2005-05-23

    Abstract: 三维盘式全息存储方法及系统属于光存储技术领域,本发明的存储方法为分轨道存储,即同一轨道上、相邻轨道上的全息图之间都有部分的重叠,所有的全息图记录和读出时不需要调整参考光和照明光的角度;对同一轨道内全息图的寻址由盘面旋转完成,对不同轨道的寻址由读写光学系统与盘面的相对平动完成;采用分轨道热固定的存储方法。根据本方法所设计的三维盘式全息存储系统,由写入系统、读出系统及全息光盘驱动系统共同组成,设计了装载全息光盘的定位器,可实现全息光盘离开全息存储器后精确复位;本发明提高了单位体积的存储密度,存储装置小型、稳定、灵活,还提高了存储图像的质量,能够降低存储数据的误码率。

    基于克罗内克积插值的离轴数字全息成像重建方法

    公开(公告)号:CN112506019B

    公开(公告)日:2022-05-03

    申请号:CN202011365760.4

    申请日:2020-11-29

    Abstract: 一种基于克罗内克积插值的离轴数字全息重建方法,涉及数字全息成像技术领域。本发明记录样品的离轴数字全息图,采用一个常数矩阵对离轴数字全息图作克罗内克积插值处理,对插值后的全息图作傅里叶变换得到包括新增混叠频谱区域的插值频谱图,将混叠频谱区域相加并用其替换原有区域分布,截取混叠频谱区域中的正一级或负一级频谱项移动到频谱域中心,作逆傅里叶变换后进行角谱传播重建复振幅分布,得到成像重建的振幅图和相位图。本方法有利于由样品的离轴数字全息图重建其高分辨的振幅分布和相位分布。

    一种非相干数字全息三维动态显微成像系统与方法

    公开(公告)号:CN103257441B

    公开(公告)日:2016-10-26

    申请号:CN201310173970.7

    申请日:2013-05-13

    Abstract: 非相干数字全息三维动态显微成像系统与方法,属于光学衍射成像和非相干数字全息技术领域。采用基于位相空间光调制器的单次曝光相移技术和非相干光照明情形下实现动态样品的三维显微成像,在全息图拍摄光路中,入射光为由样品透射或反射的非相干光,经过准直透镜汇聚以及空间光调制器的调制后,被所述的图像传感器接收,图像传感器,空间光调制器均与计算机进行连接。其中空间光调制器上加载了在计算机中制作生成衍射分光的位相掩膜图样。为使系统可以一次曝光记录多幅相移全息图,需要将空间光调制器上的位相加载方法调整为分区域相移加载方式。本发明能够通过单次曝光同时记录多幅非相干数字全息图,可用于对光源相干性要求较低的实时性三维成像,并且系统内不需要任何移动或扫描部件。

    基于三角数字全息测量空间相干性的系统与方法

    公开(公告)号:CN103411687B

    公开(公告)日:2016-06-01

    申请号:CN201310253079.4

    申请日:2013-06-24

    Abstract: 基于三角数字全息测量空间相干性的系统与方法,属光学干涉测量和非相干全息术应用领域。其在光路中采用非相干白光源照明,加入干涉滤波片进行窄带滤波,使变为准单色光。准单色光入射孔径平面,再经分束镜被分为两束,两束光波分别沿系统光路顺时针和逆时针传播,在两光束远场出射平面放置图像传感器接收干涉形成的全息图。通过波片组合改变两束光波的相位差,记录四幅全息图,叠加得到复值全息图。复值全息图的复振幅为给定平面上对应点对的互相干函数,提取互相干函数的振幅和位相描述该点对的空间相干性。使孔径平面上的小孔垂直系统光轴在写入平面内或与写入平面垂直的平面内移动,采集一系列全息图,获得光场在二维方向上的空间相干性。

    双波长偏振复用数字全息成像系统及方法

    公开(公告)号:CN104834201A

    公开(公告)日:2015-08-12

    申请号:CN201510243108.8

    申请日:2015-05-13

    Abstract: 双波长偏振复用数字全息成像系统及方法,该系统包括一种双波长偏振复用数字全息记录单元和一种双波长偏振复用数字全息成像重构单元。一种双波长偏振复用数字全息记录单元包括双波长偏振复用数字全息记录光路和方法,所述的双波长偏振复用数字全息记录单元用于记录两个不同波长的数字全息图。一种双波长偏振复用数字全息成像重构单元包括双波长偏振复用数字全息成像重构流程和方法,配置所述的双波长偏振复用数字全息成像重构单元,用于对所记录的数字全息图进行衍射成像重构,实现原物体的真实相位信息的三维成像。

    数字全息的多步叠加散斑去除成像系统

    公开(公告)号:CN102506746A

    公开(公告)日:2012-06-20

    申请号:CN201110294706.X

    申请日:2011-09-29

    Abstract: 数字全息的多步叠加散斑去除成像系统,属于数字全息术领域。激光器出射端安置有光纤耦合器,光纤耦合器与光纤分束器相连,光纤分束器接出两路光纤分别连接在二维电动平移台和光纤夹持器上。连接在二维电动平移台的光纤的出射光与二维电动平移台相垂直,沿其出射方向设置有透镜和样品,二维电动平移台相连的光纤随二维电动平台水平移动;样品的中心与合束晶体中心连线垂直于合束晶体的一个侧面。与光纤夹持器连接的光纤的出射光垂直于合束晶体的另一个侧面,此侧面与样品中心相垂直的侧面垂直;与样品中心相垂直的合束晶体的侧面的相对侧面放置有CCD相机,其与二维电动平台与计算机相连。本系统降低了数字全息再现像的散斑噪声,提高了信噪比。

    点源参考光畸变补偿数字全息相衬显微镜

    公开(公告)号:CN102207613A

    公开(公告)日:2011-10-05

    申请号:CN201110148892.6

    申请日:2011-06-03

    Abstract: 点源参考光畸变补偿数字全息相衬显微镜,属于数字全息术技术领域。其在激光器出射端的前方安置有光纤耦合器,光纤耦合器与光纤分束器相连,光纤分束器接出两路光纤连接有光纤准直器和光纤夹持器,光纤准直器下方置有用于盛放样品的样品台,样品台连接在三维线性平移台上,样品台下方置有显微物镜的前端,显微物镜的后端的下方放置合束晶体,光纤夹持器与显微物镜对准合束晶体的两个相垂直的侧面;合束晶体下方置有CCD相机,CCD相机与计算机相连。本装置可以直接再现得到无二次相位畸变的三维再现像,而不需要再现后通过数值方法补偿再现像中存在的二次位相畸变,提高了计算效率,有利于实时观测的要求。

    倒置式数字全息显微镜
    19.
    发明公开

    公开(公告)号:CN102122063A

    公开(公告)日:2011-07-13

    申请号:CN201110057081.5

    申请日:2011-03-09

    Abstract: 倒置式数字全息显微镜,属于数字全息术技术领域,可用于三维实时形貌测量,生物细胞成像,其在激光器5的前方安置有光纤耦合器4,光纤耦合器4通过光纤与光纤分束器3相连,光纤分束器3接出两路光纤分别连接有光纤准直器1和光纤准直器6,光纤准直器1下方置有用于盛放样品13的样品台11,样品台11连接在12.二维平移台上,样品台11下方置有安装在一维平移台10上的显微物镜9,显微物镜9与光纤准直器6对准合束晶体8的两个相垂直的侧面。合束晶体8下方置有CCD相机7。其可以对培养皿底部贴壁生长的活体细胞做长时间高分辨率观测,系统集成度高,体积小,并且由于采用光纤连接使激光器可以任意安装在系统其他部位。

    三维盘式全息存储方法及系统

    公开(公告)号:CN1697038A

    公开(公告)日:2005-11-16

    申请号:CN200510070880.0

    申请日:2005-05-23

    Abstract: 三维盘式全息存储方法及系统属于光存储技术领域,本发明的存储方法为分轨道存储,即同一轨道上、相邻轨道上的全息图之间都有部分的重叠,所有的全息图记录和读出时不需要调整参考光和照明光的角度;对同一轨道内全息图的寻址由盘面旋转完成,对不同轨道的寻址由读写光学系统与盘面的相对平动完成;采用分轨道热固定的存储方法。根据本方法所设计的三维盘式全息存储系统,由写入系统、读出系统及全息光盘驱动系统共同组成,设计了装载全息光盘的定位器,可实现全息光盘离开全息存储器后精确复位;本发明提高了单位体积的存储密度,存储装置小型、稳定、灵活,还提高了存储图像的质量,能够降低存储数据的误码率。

Patent Agency Ranking