-
公开(公告)号:CN111507601A
公开(公告)日:2020-08-07
申请号:CN202010282682.5
申请日:2020-04-12
Applicant: 北京工业大学
Abstract: 本发明公开了基于深度强化学习与区块链共识的资源优化分配决策方法,通过构建计算任务模型和服务器状态模型,计算主控制器本地计算和卸载计算的能耗和经济开销,以及区块链共识过程产生的计算经济开销,从而通过训练深度神经网络和策略网络,指导调整控制器选择、卸载决策、区块尺寸和服务器选择,完成场景内的最优资源分配。本发明克服了工业互联网数据安全、设备因处理计算任务而能耗过高、工作周期短,以及系统总体经济开销过高等问题。仿真实验表明,本发明提出的基于深度强化学习与区块链共识的工业互联网资源优化分配决策方法在节省控制器能耗、系统经济开销以及延长控制器群组工作总时长方面具有一定的优势。
-
公开(公告)号:CN110351754B
公开(公告)日:2022-05-24
申请号:CN201910633257.3
申请日:2019-07-15
Applicant: 北京工业大学
Abstract: 本发明公开了基于Q‑learning的工业互联网机器设备用户数据计算卸载决策方法,通过构造小区内用户计算卸载的网络模型、时延模型、能耗模型和经济开销模型,并根据小区内用户数,设置Q‑learning模型中的环境状态、卸载动作和奖励函数,从而依据Q‑learning迭代学习后所获得的Q表执行卸载动作,获得最优的卸载策略,完成小区内用户计算任务的分配处理。本发明克服了传统数据计算卸载系统无法应对复杂多变的网络环境和服务器状态以及局限于对单一开销优化等问题。仿真实验表明,本发明提出的基于Q‑learning的工业互联网设备用户数据计算卸载决策方法在减少用户总体和局部计算卸载开销方面具有一定的优势。
-
公开(公告)号:CN110351754A
公开(公告)日:2019-10-18
申请号:CN201910633257.3
申请日:2019-07-15
Applicant: 北京工业大学
Abstract: 本发明公开了基于Q-learning的工业互联网机器设备用户数据计算卸载决策方法,通过构造小区内用户计算卸载的网络模型、时延模型、能耗模型和经济开销模型,并根据小区内用户数,设置Q-learning模型中的环境状态、卸载动作和奖励函数,从而依据Q-learning迭代学习后所获得的Q表执行卸载动作,获得最优的卸载策略,完成小区内用户计算任务的分配处理。本发明克服了传统数据计算卸载系统无法应对复杂多变的网络环境和服务器状态以及局限于对单一开销优化等问题。仿真实验表明,本发明提出的基于Q-learning的工业互联网设备用户数据计算卸载决策方法在减少用户总体和局部计算卸载开销方面具有一定的优势。
-
-