-
公开(公告)号:CN106166073B
公开(公告)日:2019-06-14
申请号:CN201610509466.3
申请日:2016-06-29
Applicant: 北京工业大学
IPC: A61B5/16
Abstract: 本发明公开了一种基于电子化POMS自评量表的心境状态自评系统,该系统包含能手机和后台云服务器两大部分。其中,智能手机安装了自主开发的电子化POMS自评量表,后台云服务器上接收手机发送的量表数据并运行心境状态评价算法,将得到的主要心境状态及其变化规律、用户不同心境状态日常变化规律和总体心境量化评估等结果发送到手机上并反馈给用户。本发明通过滑块和按钮等组件来操作电子化自评量表,简单方便的操作不仅适用于患有抑郁、躁狂、焦虑等精神疾病患者及复诊患者的日常精神状态评估,提高患者治疗依从性,而且可以为家庭、社区等环境下的正常用户提供精神状态评估服务,提高精神卫生医疗服务的可及性。
-
公开(公告)号:CN107423682A
公开(公告)日:2017-12-01
申请号:CN201710432360.2
申请日:2017-06-09
Applicant: 北京工业大学
CPC classification number: G06K9/00523 , A61B5/72
Abstract: 本发明公开了一种非线性脑电信号的复杂度分析方法。排列熵与样本熵算法大量被运用在非线性复杂度分析中,但其均存在一定的缺点。样本熵虽然具有很好的鲁棒性并且在准确度上有一定的优势,但其计算效率缺不尽如人意;而排列熵虽然计算不如样本熵精确但其具有计算快速的特性。针对以上问题,发明一种对脑电信号进行非线性复杂度分析的方法,首先对脑电信号进行滤波处理,提取有效频段,之后进行排序并按照两个规则进行等分符号化赋值,最后分别进行m维及m+1维相空间构造进行熵值的计算。本发明对之前非线性方法排列熵提高了准确度,对样本熵方法提高了计算效率。
-