用于深度神经网络频繁传输的压缩方法及系统

    公开(公告)号:CN108665067A

    公开(公告)日:2018-10-16

    申请号:CN201810528239.4

    申请日:2018-05-29

    Applicant: 北京大学

    Abstract: 本发明公开了用于深度神经网络频繁传输的压缩方法及系统,扩展深度神经网络压缩至传输领域,利用深度神经网络模型之间的潜在冗余性进行压缩,减少深度神经网络在频繁传输下的开销。本发明的优势在于:本发明结合了深度神经网络在频繁传输上的多个模型之间的冗余性,利用了深度神经网络之间的知识信息进行压缩,减少了所需传输的大小和带宽。在相同带宽限制下,能更好地将深度神经网络进行传输,同时允许深度神经网络在前端进行针对性压缩的可能,而非只能将深度神经网络进行针对性压缩后进行部分的还原。

    用于深度神经网络频繁传输的压缩方法及系统

    公开(公告)号:CN108665067B

    公开(公告)日:2020-05-29

    申请号:CN201810528239.4

    申请日:2018-05-29

    Applicant: 北京大学

    Abstract: 本发明公开了用于深度神经网络频繁传输的压缩方法及系统,扩展深度神经网络压缩至传输领域,利用深度神经网络模型之间的潜在冗余性进行压缩,减少深度神经网络在频繁传输下的开销。本发明的优势在于:本发明结合了深度神经网络在频繁传输上的多个模型之间的冗余性,利用了深度神经网络之间的知识信息进行压缩,减少了所需传输的大小和带宽。在相同带宽限制下,能更好地将深度神经网络进行传输,同时允许深度神经网络在前端进行针对性压缩的可能,而非只能将深度神经网络进行针对性压缩后进行部分的还原。

    一种模型复用方法与系统
    13.
    发明公开

    公开(公告)号:CN110647917A

    公开(公告)日:2020-01-03

    申请号:CN201910785418.0

    申请日:2019-08-23

    Applicant: 北京大学

    Abstract: 本申请公开了一种模型复用方法与系统,包括:将数据集中的有标签数据输入至待训练模型,基于目标损失函数,得到目标损失;将通过数据集中的多个数据得到的多个数据组合输入至待训练模型,基于模型复用损失函数,得到复用损失;根据目标损失和复用损失,更新待训练模型;重复上述步骤,直到重复次数达到阈值次数,得到训练好的待训练模型。通过将数据集中的有标签数据输入至待训练模型,得到目标损失,将通过数据集中的多个数据得到的多个数据组合输入至待训练模型,得到复用损失,使用少量的有标签数据得到的目标损失和包括大量无标签数据的所有数据得到的复用损失共同更新待训练模型,能够有效利用大量无标签数据。

    基于深度度量学习的目标精确检索方法

    公开(公告)号:CN106897390B

    公开(公告)日:2019-10-15

    申请号:CN201710060334.1

    申请日:2017-01-24

    Applicant: 北京大学

    Abstract: 本发明公开一种基于深度度量学习的目标精确检索方法,方法包括:深度神经网络结构的迭代训练中,对提取的同类目标对象的多张图片的特征进行处理过程中,使得相同类别的目标对象相互靠近,不同类别的目标对象相互远离,具有不同类别标签的目标对象的特征距离大于预设距离,且属于同一类别的个体的特征分布中,具有相似属性的类内个体之间距离相互靠近,具有不同属性的类内个体之间大于预设距离,以获得训练后的深度神经网络模型;采用训练后的深度神经网络模型对待查询图片与预设的参考图片分别提取各自的特征,并获取查询图片与参考图片之间特征的欧式距离,对该距离进行从小到大的排序,获得精确检索的目标。本实施例的方法解决了垂直领域的精确检索问题。

    用于视觉特征数据编解码的方法及系统

    公开(公告)号:CN107846576A

    公开(公告)日:2018-03-27

    申请号:CN201710944751.2

    申请日:2017-09-30

    Applicant: 北京大学

    Abstract: 本发明公开了用于视觉特征数据编解码的方法及系统。所述方法包括:编码器接收至少一种智能前端产生的至少一种第一协议格式视觉特征数据和用于唯一地标识对应至少一种第一协议格式的至少一个证书标识,根据至少一个证书标识将至少一种智能前端产生的至少一种第一协议格式视觉特征数据转换为同一种第二协议格式视觉特征数据;解码器接收第二协议格式视觉特征数据,根据第二协议格式解析得到至少一种智能前端产生的、至少一种第一协议格式视觉特征数据所包含的至少一种原始视觉特征数据。至少避免了在服务器存储用于说明不同视觉特征数据形式的不同规范,仅仅需要在服务器存储一种协议格式的规范即可。而且,也避免了后端的规范更新操作。

Patent Agency Ranking